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Abstract

State-of-the-art rock lithology identification is based on
manual inspection and laboratory microscopic testing. This
approach is time-consuming, expensive, uncertain, and
subject to human bias. Furthermore, people always wonder
about rock types during outdoor activities, so a rock
classification tool would find many industrial and
educational applications. Prior attempts to automate this
process used various techniques without success. Yet, deep
learning has not been considered, and thus this novel
project explores this application. There is not an open-
source dataset curated for this problem. Hence, we scraped
the web and designed a dataset from scratch for igneous
rock classification with 7 classes: Andesite, Basalt, Diorite,
Gabbro, Granite, Peridotite, and Rhyolite. State-of-the-art
pretrained computer vision architectures are explored,
including VGG, ResNet, and DenseNet. Fully unfrozen,
pretrained DenseNet121 showed the best performance on
the validation set with average precision, recall, and
F; score of 91.07%, 92.73%, and 91.17%, respectively.
Error analysis and rock features are explored by
generating Grad-CAM heatmaps to understand how the
model arrives at class predictions. It is observed that
granularity and color are major contributors to the
classification process.

1. Introduction

Rock lithology identification is a vital component of field
geological surveys. Traditionally, rocks are collected at the
field and brought to laboratories to be identified and
analyzed by experienced geologists. This process is
expensive, time-consuming, uncertain, and subject to bias
[16]. With the advent of deep learning in computer vision
tasks, rock type identification, which represents the first
step of the full geological survey process, can be improved
and fully automated. Furthermore, autonomous rock
classification will facilitate more discoveries in Earth
geological investigations and Mars planetary surface
exploration missions.

Indirect quantitative image analysis methods are
common in analyzing rock samples, where the rock image
is first segmented to allow for measuring various rock
properties (size, granularity, mineralogy, orientation, etc.)
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[1][10]. With the aid of rock property books and glossaries,
these features are used to identify the rock type. Other
efforts involved the application of machine learning
(support vector machine, K-nearest neighbors and decision
trees) to classify the rock texture without knowledge of the
type [12]. However, rock type identification is critical as it
informs us about the geological history of the environment.
For example, crystal size in igneous rocks reflects the
cooling speed during rock formation time, while grain size
and shape of sedimentary rocks indicate the type of the rock
depositional environment [13].

2. Related Work

Many efforts focused on manual feature selection to encode
the rock image before applying a classifier to identify the
rock type. Efforts included the use of hand samples as well
as microscopic samples with handcrafted spectral and
textural features with different machine learning
algorithms, e.g. K-nearest neighbors, optimal spherical
neighborhood, Bayesian analysis, and linear discriminant
analysis [7][8][15]. However, manual feature selection is
not only time-consuming and hard to generalize, but also
fails to accommodate for rock heterogeneity.

Hence, recent research efforts resorted to automatic
feature generation to classify rock images. Using a dataset
of 700 rocks with 9 types, researchers utilized semi-
supervised feature detection based on K-means (~96%
accuracy) and unsupervised self-taught feature encoding
(~90% accuracy) to allow for rock classification with
minimal manual effort in rock type labelling and feature
extraction [13]. Other efforts involved using microscopic
rock images with per-pixel classification of 4 intrusive
igneous rock types based on edge and color features with
over 90% accuracy [6]. Though these approaches would
eliminate the need for an expert geologist if successfully
generalized to more classes, they require microscopic
images which is costly and time-consuming. Other efforts
used a 6-layer convolutional neural network (CNN)
architecture to classify rock granularity using microscopic
rock imagery, yet this is still not a fully integrated approach
and requires laboratory microscopic images [2].

This project aims to classify igneous rocks using hand
sample images, which will make it usable for field research
as well as educational and entertainment purposes by the



general public. Up to the authors’ knowledge, this novel
project is the first to explore the application of end-to-end
CNN architectures to classify raw hand sample igneous
rock images without the need for any expensive, time-
consuming laboratory efforts.

3. Dataset

To the best of the authors’ knowledge, there is no
sufficiently large, labelled, and open-source rock image
database. Hence, efficient data collection and preprocessing
are critical components to this project. We collaborated
with the Branner Earth Sciences Library & Map Collections
staff and set up a public Dropbox account which was sent
to the geology community within Stanford University to
crowdsource labelled rock images. This option did not yield
a sufficient dataset so far!. Hence, we scraped Google
Images for rock images to build our own dataset?.

Igneous rocks are generally classified based on two
major criteria: grain size and mineral content. The most
popular coarse-grained igneous rocks are granite, diorite,
gabbro, and peridotite. Meanwhile, the most common fine-
grained igneous rocks are rhyolite, andesite, and basalt.
Hence, those will be the 7 classes of interest for this project,
seen in Fig. 1.

Peridotite Rhyolite Andesite

Basalt

Fig. 1—Popular Igneous Rock Types: Example images of the
most common igneous rocks. Notice the variations in particle size
and mineral content.

We scraped Google Images for 100 images per class,
which were preprocessed in two stages. First, we manually
eliminated the clearly mislabeled data, e.g. humans, trees,
hills, etc. At this stage, the dataset suffered from class
imbalance with image count of {Andesite [class 1]: 45,
Basalt [class 2]: 42, Diorite [class 3]: 68, Gabbro [class 4]:
48, Granite [class 5]: 62, Peridotite [class 6]: 49, Rhyolite
[class 7]: 52}. Secondly, we used an error analysis approach
(to be highlighted in the upcoming sections) for further
preprocessing, which was followed by scraping for more

! We are still open to accept more labelled rock images at:
https://www.dropbox.com/request/60NyyOEb4pexSCOpy8Jt

2 Github repository that we used to scrape Google Images:
https://github.com/hardikvasa/google-images-download. git

images to retain class balance. Hence, the final dataset size
was 511 images with 73 images per class, which was split
into train:validation:test ratios of roughly 80:10:10. Note
that the small and imbalanced dataset imposes a
considerable challenge towards the success of this project.

Image preprocessing further involved normalization of
pixels using ImageNet dataset mean and standard deviation
of (0.485, 0.456, 0.406) and (0.229, 0.224, 0.225),
respectively [3]. Images are down-sampled to 224 x 224 to
accommodate for these architectures. To alleviate the
dataset small size issue, random data augmentation
(horizontal flipping, vertical flipping, and 45° rotation) is
applied to training examples.

4. Methodology

The Pytorch implementation is used to develop this end-to-
end deep learning model®. This process involved exploring
several computer vision architectures, transfer learning, and
class activation mapping (CAM) for error analysis.
Weighted multiclass cross-entropy is the loss function of
choice as it accounts for the dataset class imbalance [9]. Let
n; be the number of training examples of the i*"class, then

maxn;
L

the corresponding class weight is computed as w; = ——

3
Loss is minimized using stochastic gradient descent (SGD)
with 0.9 momentum where it is found to generalize better
for this task than adaptive techniques (AdaGrad, RMSProp,
Adam, etc.) [17]. While loss and accuracy plots will be used
to visualize the learning curves and fine tune the models, F;
score is used as the evaluation metric to save a checkpoint
of the best performing model during training. Average
expressions of precision and recall are used to calculate
average F; score since this is a multiclass task.

4.1. Architectures

After exploring simple CNN designs and experimenting
with state-of-the-art computer vision models, three major
architectures are nominated: VGG [14], ResNet [4], and
DenseNet [S5]. When compared to VGG, Resnet and
Densenet incorporate residual and dense blocks,
respectively, which alleviate gradient vanishing and allow
for deeper network designs by facilitating gradient flow
during backpropagation. Different depths and layer count
of these architectures are explored as part of the
optimization process.

Note that the hyperparameter tuning process is not
explicitly outlined due to space limitation. However, it is
important to note that learning rate step decay (factor of 0.5
every 10 epochs) is used to train these models for a total of

3 Github repository of our work and implementation can be found at:
https://github.com/aljubrmj/CS230-Deep-Learning-Project



50 epochs using batch size of {4,8,16,32,128}. In
addition, regularization (data augmentation, dropout, L2
weight decay, and early stopping) is applied to prevent
overfitting the training dataset and handle the bias-variance
tradeoff. dropout probability and L2 regularization strength
spanned across {0.2,0.5,0.8}, and {0.0001,0.001,0.01},
respectively. Linear and log grid searches are used for
different hyperparameters as appropriate.

Transfer learning framework is incorporated to allow for
leveraging knowledge (features, weights, etc.) of other
image recognition tasks, which improves model
performance and training speed. ImageNet-pretrained
model weights are used as initialization in various forms.
Note that rocks are characterized by granularity which is
microscopic, unlike the macroscopic nature of the
ImageNet features. Hence, unfreezing the last affine layer
is insufficient to achieve the optimal results. Rather,
training must involve unfreezing convolutional layers even
though the training set at hand is small.

Architecture description is limited to DenseNet121 as the
results will show that it is the top-performing model. This
architecture connects each layer to every other layer in a
feed-forward fashion to form dense blocks, seen in Fig. 2.
Each layer receives the preceding feature maps as input
while passing its own feature maps to all subsequent layers.

Fig. 2—DenseNet Dense Block: Illustration of a 5-layer dense
block with growth rate of 4 [5].

Transition convolutional and max pooling layers are used
to connect these dense blocks and manipulate feature map
sizes. Each convolutional layer is designed to perform batch
normalization, rectified linear unit, and convolution (BN-

ReLU-Conv) operations in order, denoted by H(.). For a

DenseNet121 architecture with L layers, there are Er)

direct connections compared to L direct connections
traditionally. Let the output of the I*" layer be x;, Eq. 1
shows how layers are connected in dense blocks. This
architecture is advantageous as it alleviates the vanishing-
gradient problem, accelerate optimization, and significantly
reduce the number of parameters.

X, = Hl([xovxlv "'!xl—l]) (Eq 1)

4.2.Error Analysis

Error analysis is important to understand what features the
model looks for to make predictions, find out which class
results in most mispredictions, and filter out the training
dataset. Gradient-weighted Class Activation Mapping
(Grad-CAM) is used for this purpose.

Grad-CAM is used to generate a coarse localization
heatmap highlighting the important regions or pixels in the
image which the model used to generate its prediction [11].
While the original CAM paper [18] requires the substitution
of fully-connected layers with a global average pooling
layer after the convolutional blocks, Grad-CAM is
advantageous as it is applicable to a significantly broader
range of architectures, as seen in Fig. 3. This technique will
contribute significantly to further preprocessing and
curating the dataset.
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Fig. 3—Grad-CAM Workflow: Image is forward-propagated
through the CNN to obtain raw scores. The gradient of the desired
class is set to 1 while all others are strictly set to zero. The signal
is then back-propagated to rectified convolutional feature maps
which generate the coarse localization [11].

5. Preliminary Results

With 7 classes at hand, random guessing results in cross-
entropy loss and accuracy of 1.946 and 14.29%,
respectively. As seen in Fig. 3, randomly initialized
ResNet18 architecture is used to first build a baseline model
and overfit the training data that outperforms random
guessing. Moreover, using a fully frozen pretrained
ResNet18 while only training on the last affine layer yields
further improvement. These two models resulted best
validation accuracy of 51.78% and 66.07%, respectively.
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Fig. 3—Preliminary Models: Comparison of training (solid
line) and validation (dashed line) loss and accuracy of randomly
initialized and pretrained ResNet18 models. Note that using fully
frozen pretrained models while only training the final affine layer
results in significant improvement.

Given the added value of transfer learning, the three
aforementioned  state-of-the-art ~ computer  vision
architectures are evaluated. All are initialized with
ImageNet-pretrained weights with fully frozen layers,
except for the last affine layer. Meanwhile,
hyperparameters are tuned and regularization is applied. As
seen in Fig. 4, VGG19 with batch normalization
(VGG19_BN), ResNetl18, and DenseNet121 are found to
be the best-performing with best validation accuracies of
66.07%, 71.43%, and 78.57%, respectively. Note that
DenseNet121 resulted in the top performance while both
DenseNet121 and ResNetl8 trained faster than
VGGI19_BN since the latter has significantly higher
number of weights feeding into the last affine layer.
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Fig. 4—Pretrained Models: Comparison of training (solid line)
and validation (dashed line) loss and accuracy of pretrained
models. Note that these models are fully frozen, except for the
final affine layer. DenseNetl21 outperforms all others in
validation accuracy.

To further improve the performance, we inspected the
class precision and recall for the highest performing model,
seen in Table 1. Note that the model mispredictions are

mainly due to andesite, diorite, and gabbro (classes 1, 3, and
4, respectively). Observing these rocks in the dataset, see
Fig. 1, they actually do look quite similar in granularity and
color. A human would definitely struggle to differentiate
between these rocks. Meanwhile, observing the imbalanced
nature of the dataset, there is no relationship between class
F; score and class sample size. This is attributed to the use of the
weighted cross-entropy loss which algorithmically alleviates the
class imbalance problem.

Table 1—Model Metrics: precision, recall, and F; score

Class 1 2 3 4 5 6 7

Precision | 0.75 0.75]1 0.75 1 0.63 ] 0.75 | 1.00 | 0.88

Recall 0.67 ] 0.86 | 0.67 | 0.71 | 1.00 | 0.73 | 1.00

F1 Score | 0.71 ] 0.80 | 0.71 | 0.67 | 0.86 ] 0.84 | 0.93

To further analyze the model error, it is important to
inspect the features (pixels) which trigger the model to
predict the output rock class. Grad-CAM is used to generate
heatmaps that indicate the discriminative image regions
used by the model to identify a specific category. As seen
in Fig. 5, significant insights regarding the dataset quality
are drawn which explain most of the model mispredictions.
These images are drawn from the training dataset, so they
reflect what the model is learning to classify each specific
rock type. We can see that the image object count,
background color, and illumination level significantly
affect the model classification decision.

Nlumination

Multiple Objects Background

Fig. 5—FErroneous Dataset Images: Grad-CAM heatmaps of
erroneous images drawn from the training dataset, showing how
the model is influenced by image illumination level, background
color, and object count.

Hence, Grad-CAM heatmaps are used to further curate
the dataset, which typically exacerbated the data imbalance
problem. As a result, we scraped the web for more data but
this time with a priori knowledge of the malignant image
variations that need to be avoided. This represents the last
preprocessing step, and it brings up the final dataset size to
511 images with 73 images per class. Therefore, the dataset
is fully balanced with properly curated images.

VGGI19_BN, ResNetl8, and DenseNetl21 were all
retrained after this dataset curation step. In addition to
hyperparameter tuning and only unfreezing the final affine
layer while transfer learning the features from ImageNet,
we gave these architectures a chance to train without
freezing any layers. In other cases, we froze all layers
except for the all affine layers as well as a convolutional




layer. This choice is based on the intuition that shallower
layers learn simple features, e.g. edges, while deeper layers
learn more complex shapes. The nature of rock features
(granularity, crystal shape and size, heterogeneity, etc.) are
microscopic which is not fully captured from the mainly
macroscopic features extracted from ImageNet. Despite
this difference in the two tasks, using ImageNet-pretrained
models is still advantageous, as shown in Fig. 3.

Fig. 6 shows model retraining results with significantly
higher best validation accuracy. Using the ImageNet-
pretrained weights for initialization only while leaving all
architecture layers unfrozen, DenseNetl21 is the top-
performing model with best validation accuracy of 91.07%.
Note that this model checkpoint is stored based on the
highest F; score recorded during training. This result
emphasizes the fact that the ImageNet features do not fully
capture the rock features, and some or all of the
convolutional layers need to be unfrozen to capture these
missing features despite the small dataset size.
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Fig. 6—Unfrozen Models: Comparison of training (solid line)
and validation (dashed line) loss and accuracy of pretrained
models. Note that these models incorporate unfrozen
convolutional layers besides unfreezing affine layers, which
allows for learning rock-specific features. DenseNet121
outperforms all others in validation accuracy.

Model performance on the validation set is further
evaluated using confusion matrix, precision, recall, and
F, score, seen in Table 2. Note that the validation set
contains exactly 8 images of each class. The average
precision, recall, and F; score are 91.07%, 92.73%, and
91.17%, respectively. Despite curating the dataset, the
model still incurs most mispredictions due to andesite,
diorite, and gabbro (classes 1, 3, and 4, respectively).
Again, this result is anticipated as these rocks are visually
challenging to differentiate. Further increasing the size of
the dataset with well curated example is expected to
alleviate this problem. Meanwhile, evaluating the model on
the test set which also contains 8 rocks per class resulted in
accuracy, precision, recall, and F; score of 75.00%,
75.00%, 81.63%, and 78.17%, respectively.

Table 2—Final Model Validation Evaluation Metrics:
confusion matrix, precision, recall, and F; score
Class 1 2 3 4 5 6 7
1 6 1 0 1 0 0 0
2 0 7 0 1 0 0 0
3 0 0 7 0 1 0 0
4 0 [ o 0 -ﬁ 0 [ o
5 0 0 0 0 0 0
6 0 0 0 1 0 7 0
7 0l o 0 [ o [ o] o [T8T]

Precision | 0.75 [ 0.88 | 0.88 | 1.00 | 1.00 | 0.88 | 1.00

Recall 1.00 | 0.88 [ 1.00 | 0.73 | 0.89 [ 1.00 [ 1.00

F1 Score | 0.86 | 0.88 | 0.93 | 0.84 | 0.94 | 0.93 | 1.00

It is important to remember that these rock glossaries and
categories are invented by humans after all, and do not
necessarily reflect the optimal rock categorization. Hence,
rock glossaries could also be reviewed based on the
interpretation insights acquired from deep learning models.
Fig. 7 shows Grad-CAM maps generated using the highest
performing DensNet121 model after fully curating the
dataset. Although the dataset is small, we can evidently see
that the network is actually capturing granularity features
which is a critical component to physical rock properties.

Fig. 7—Final Grad-CAM Heatmap: comparing the Grad-CAM
heatmaps of the coarse-grained Gabbro (left) and fine-grained
Rhyolite (right), we observe that the model focuses on granular
features to make its predictions.

In addition, we attempted greyscale data augmentation to
understand the reliance of model predictions on color. We
found that validation performance dramatically dropped
below 15% which is almost at the random guessing level.
Hence, color is a crucial feature to the network even though
some rock classes can take different colors as seen in the
dataset.

6. Future Work

Several techniques and approaches can be explored to

further improve this classification model:

e Incorporate microscopic images to the dataset for
feature extraction purposes, yet they should not be used
to build the final model since the goal is to predict rock
type using hand samples

e Explore transfer learning of features learned from
datasets with more microscopic features other than
ImageNet



e Consider a pipeline model with an attention layer
module to avoid confusing the rock due to variations in
background, illumination, etc.

e Expand this work to more igneous rock types as well
as sedimentary and metamorphic rocks.

7. Contributions

Jabs and Camilo contributed equally to all tasks involved in
completing this project, including data collection and
preprocessing, code development, model training and
validation, evaluation, result analysis, and report writeup.
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