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Abstract—River warming in response to climate change may
have far-reaching ecological and socioeconomic consequences.
Unfortunately, large temporal gaps in the instrumental record limit
the ability to study these systems. To address this, I model daily river
temperatures across the U.S. using a long short-term memory neural
network with the goal of gap-filling historical records, and I then
estimate historical shifts in the probability of extreme heat events.
The model achieves high accuracy, with a median R? of 0.91 at
locations not used to train the model. Results suggest that riverine
heatwaves have already increased in duration across much of the
U.S., with trends likely to accelerate in the future.
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I. INTRODUCTION

Water temperature is a fundamental property of aquatic
ecosystems.! Riverine water temperatures directly impact the
physiological processes of fish and other organisms,
determining their metabolic rates, growth, life cycles, and
habitat suitability. Temperature can also indirectly influence
water quality, with warmer waters increasing cyanobacteria
growth, denitrification rates, and contaminant toxicity.

Moreover, climate extremes play a critical role in structuring
terrestrial and marine ecosystems."> One such climate extreme,
atmospheric heatwaves, has become considerably more frequent
and intense in recent decades in response to climate change, and
recent work has shown that marine environments, too, are
already experiencing prolonged and more intense heatwaves.
Evidence, or lack thereof, that climate change has already
impacted freshwater temperatures is relevant to a variety of
applications, including ongoing or future litigation regarding
climate change and thermal pollution. For instance, fisheries and
conservation groups recently sued the Environmental Protection
Agency to protect salmon in the Pacific Northwest, arguing in
part that the salmon are threatened by warming rivers. Further,
if climate change has already impacted observed riverine
heatwave (RHW) trends, then it is reasonable to assume that
trends will continue into the future, albeit at a potentially
accelerated rate.

While there are minimal field or experimental studies on the
ecological effects of riverine heatwaves, there is compelling
evidence that aquatic ecosystems are vulnerable to prolonged,
extreme heat events.” Marine heatwaves, for example, have been
linked to both reduced and increased algal growth, re-
distribution of fish species, disease outbreaks, widespread coral
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bleaching, and mass mortalities. So to identify riverine
ecosystems most vulnerable to climate risks, it is crucial to
analyze and track RHWs both historically and into the future.

However, no study to date has analyzed changes in RHWs,
due, in part, to a lack of consistent daily-scale temperature data.
Large temporal gaps in the river temperature instrumental record
(from, for example, sensor malfunction) limit the ability to
calculate long-term heatwave metrics. Here I address, for the
first time, how RHWs have changed in recent decades by
developing a model capable of gap-filling existing records.

I address the riverine temperature gap-filling challenge by
testing several neural network architectures on a 37-year record
of daily measurements taken on the Delaware River,
subsequently applying the final model to estimate river
temperatures and relevant heatwave metrics at 253 U.S. rivers. |
find that a long short-term memory recurrent neural network
performs best on the selected training data. Further work will
investigate expanding the model to train on more riverine data,
incorporate additional input features, and predict riverine
temperature and RHWs responses to future climate change.

II. DATA

A. Response: Riverine temperature

The U.S. Geological Survey (USGS) maintains a network of
thermometers in rivers across the U.S., providing daily
temperature measurements.> To coincide with input feature
availability, I therefore restrict the analysis to the years 1981 to
2017. 1 also select only those river sampling locations with at
least 200 temperature measurements and only rivers determined
by the USGS to have had minimal human influence, such as
from artificial dams, and are therefore suitable for studying the
impacts of climate variables. This results in 254 sites (Figure 1).
I ultimately train and evaluate the model on only one of these
sites, the Delaware River, since it has minimal missing values.

B. Input features: Air Temperature and Precipitation

Air temperature and discharge have been identified as two
key drivers of riverine temperature. Shallow, low-flow rivers,
for example, are highly sensitive to fluctuations in air
temperature. As a proxy for discharge, for which there is not
widely available data, I use precipitation. For both air
temperature and precipitation, I use 4km resolution daily data
from the PRISM climate group*, aggregated over each river’s
watershed boundary (Figure 1).
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Figure 1. River temperature measurements are available for 254 rivers (points;
watershed boundaries in blue) across the U.S. I train my model on one of these,
the Delaware River, due to its minimal missing data.

III. CANDIDATE MODELS

The Delaware River data used to train and evaluate candidate
models exhibits clear seasonality and autocorrelation (Figure 2).
This suggests that recurrent neural networks may prove
particularly effective, since they can flexibly incorporate
information from previous states to inform the current value’s
prediction. I use mean-squared error (MSE) as the target
function.

I separate the 37-year data record (n=12,628) into training
(70%), evaluation (20%) and test (10%) sets. I partition these
chronologically rather than randomly in part out of convenience.
If there were clear evidence of a long-term, decadal trend, or
particularly anomalous years (the test set does seem to be cooler
on average), | would be less confident in this partitioning and
would opt for a more randomized implementation.
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Figure 2. The Delaware River data (n=12,628) used to build the model
partitioned into training (70%), evaluation (20%), and test (10%) sets.

A. Baseline Error

It is helpful to have a baseline error to compare model
performances against. I therefore consider a ‘naive” MSE to
be the MSE resulting from predicting today’s water
temperature as the average of the air temperature for the
previous 7 days. Statistical models should, if the input
features are indeed relevant, be able to outperform this naive
metric.

B. Neural Networks

I consider artificial neural networks, and two types of
recurrent neural network formulations: gated recurrent units
(GRUs) and long short-term memory (LSTM) models.
GRUs and LSTMs are similar, with GRUs generally
sacrificing some accuracy relative to LSTMs for lower
computational cost, a common tradeoff in machine learning
applications.

For all, I consider different combinations of dropout
regularization (for recurrent networks there are two forms
of dropout one may include for each layer), Adam vs.
RMSprop optimizers, and different numbers of layers, input
dimensionality, training epochs, and minibatch sizes. I
dedicated comparatively low time to tuning parameters for
the ANN, so its lower performance may be in part due to
personal bias.

For the GRU and LSTM models, I use a lookback period of
14 days, meaning that the model can directly take into
account only data from the previous 14 timesteps in
estimating the current value. I did not tune this parameter.

I standardize all three variables by centering and dividing
by the respective standard deviations prior to fitting the
models. MSEs in Table 1 are in standardized units.

IV. RESULTS

The LSTM model performed best on the evaluation set. It
has dropout=0.1 and recurrent dropout=0.1. Because there are
only two additional input features and a lookback period of only
14 timesteps, along with a large training set, I think it was
difficult for the LSTM model to overfit the data, resulting in

" Evaluation Set
Model Architecture (n=2,600) MSE
Naive baseline | Average 7-day air temperature 0.133
Flattened input layer
(outputDim=84), dense layer
ANN (outputDim=32), dense layer 0.069
(outputDim=1)
GRU GRU layer ((?utgutDlm:16), dense 0.059
layer (outputDim=1)
1D convolution layer, maxPooling,
CNN + GRU 1D convolution layer, GRU layer, 0.059
dense layer
1 LSTM layer (outputDim=16)
LSTM followed by two dense layers 0.055
(outputDim=1)




improved performance at lower levels of dropout
regularization. I also ran the model for 15 epochs and batch size
of 32. The model performs well on the held out test data
(n=1,228) (Figure 3) with an R’ of 0.95. The Adam optimizer
tended to perform better than the RMSprop algorithm. There is
also an interesting dip in observed temperature in the summer
of 2015 that the model failed to capture (Figure 3), suggesting
perhaps that something aside from air temperature and
precipitation may have caused the decrease.
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Figure 3. The final LSTM model achieves high accuracy on the test set,
capturing both the magnitude and seasonality of temperatures.

V. MODEL APPLICATION

Given that the LSTM model perfoms well on the test set for
the Deleware River site, I was interested to see how the same
model perfomed when applied to the remaining 253 sites
identified previously (feature inputs appropriately standardized
prior to applying the model). Despite these rivers coming from
distinct regions—where the relationships between air
temperature, precipitaiton, and water temperature are not
expected to be identical—the model performs well, with a
median R’ of 0.91 and median RMSE of 2.1°C. The RMSE
would likely improve had training data from these sites been
incorporated as well into the model build.

With this reassuring performance on the remaining river
sites, I then take the fitted daily riverine temperatures at each
location and estimate the occurrence of RHWs. I use a simple
metric for RHWs used occasionally in atmospheric heatwave
studies, namely exceedance of the historical 95" percentile
temperature for a location, for at least three consecutive days. I
then calculate the linear trend over the historical 1981-2017
period at each site (Figure 4), which indicate that there have
been predominantly increasing trends in the number of RHW
days, at an increase of 20-30 days per decade at several sites.
Interestingly, the upper Midwest indicates decreasing
likelihoods of RHWs.

VI. FUTURE DIRECTIONS

I would like to incorporate training data from all stations
rather than a single station. The Deleware River, with 12,628
observations, is an excellent case study, but the combined
measurements across the 254 sites is roughly 500,000,
suggesting a great opportunity for expanding the
generalizability of the model, and conceivably supporting a
more complex model. I was also nearly able to incorporate
simulations of air temperature and precipitation from a climate
model to predict river temperature in the coming decades across
the U.S., and, potentially, the globe, a key end-goal of this
analysis. Further, online tutorials suggested differencing the
data, due to its high autocorrelation, may improve performance.
Attention-based model structures may also better incorporate
measurements from thousands of previous timesteps (e.g.
temperature on the same date for multiple previous years) than
the GRU/LSTM formulations.
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Figure 4. I apply the final LSTM model to estimate daily river temperatures at
the remaining 253 sampling locations. The model performs well on these
locations, with a median RMSE of 2.1°C and R’ of 0.91. Then, for each
sampling location, I estimate the decadal trend in heatwave days (points),
defined as days where river temperatures exceed the local historical
95percentile for at least 3 consecutive days. The majority of stations have seen
increases in the number of heatwave days. Units are change in number of
heatwave days per decade between 1981 and 2017.
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