Time Series Forecasting with Deep Learning Models

Ryan Silva, Eric Steen, Orion Darley — Stanford University

May 2019

Abstract

Deep Learning models are increasingly used for a variety of time series forecasting applications and
show significant promise as the industry-leading methodology for the foreseeable future. In particular, Deep
Recurrent Neural Networks (RNN) with Long Short Term Memory (LSTM) are the most widely accepted

Deep Learning approach for time series.

In this paper we approach the problem of predicting Bitcoin

(BTC) prices with RNNs and evaluate their efficacy compared to widely accepted traditional time series
approaches to modeling and forecasting using Autoregressive Integrated Moving Averages (ARIMA) and
Vector Autoregression (VAR) models. We show that not only is Deep Learning an effective time series
forecasting tool, but the approach outperforms the ARIMA and VAR models by a wide margin.

1 Introduction

1.1 Overview

Financial time series are especially difficult problems
to model and usually require in-depth statistical anal-
ysis and assumptions on stationarity and environmen-
tal variables. Traditional modeling approaches such as
ARIMA and VAR are generally accepted to be able to
capture short term trends in the market under the set
of assumptions they impose on the underlying time se-
ries, however modeling long term trends in the market
is still a largely unsolved problem.

We apply deep learning to bitcoin price and techni-
cal analysis indicators and compare and contrast with
these traditional modeling techniques. In particular,
we explore the ability of LSTMs to predict the future of
a financial time series based on its history, and how well
these models are able to generalize to unseen portions
of the time series. We choose LSTMs because of their
ability to model sequence data over long horizons. For
this problem, we choose input sequence lengths that
are significantly long (60-130 time steps) to harness
the modeling power of LSTMs.

Financial time series prediction is an interesting
sector to apply deep learning models to because 1)
the exploration space of hyper-parameters for this par-
ticular problem is vast, and well tuned deep learning
models could have the ability to significantly outper-
form today’s traditional approach to financial model-
ing, and 2) accurate models of the stock market can
generate new understandings into the influences of the
stock market, and generate significant economic im-
pact.

1.2 Traditional Time Series Modeling

The purpose of this paper is not to present the full-
length aforementioned time series analysis, but to in-
troduce the fundamental concepts of deep learning

which also the fundamental research tool described
here. The utility of classic time series models, such as
ARIMA and VAR, requires stringent assumptions re-
garding distribution testing (Shaipro-Wilk tests), time
series stationarity and decomposition techniques, and
autocorrelation testing.

For this research paper we used the traditional time
series modeling approach recommended by Brockwell
and Davis [4]. Economic and financial time series fields
are known for their complexity and intemperate resid-
uals, it is essential to know the elements and proper
statistical testing of the time series prior to the utility
of classic time series modeling. Because the main focus
of this research is on the application of LSTMs for a
currency market, previous examination of time series
is necessary.

2 Related Work

Bitcoin prediction introduced in this research paper
follows similar modeling approaches proposed by An-
drew [1] who compares machine learning modeling and
LSTMs to predict various financial markets primarily
on Open, High, Low, Close (OHLC) data. Andrew
suggests framing predictive models using the mid and
close prices, however this paper only explores predict-
ing the close price.

Akita, Matsubara, Uehara, and Yoshihara [2] pro-
pose a combined stock forecasting application that con-
verts newspaper articles into distributed representa-
tions with ”Paragraph Vectors” and combines these
results with predicted stock values, economic indices,
company price-earnings rations, and other data inputs
from LTSMs to predict future price movements.

Zhuge, Xu, and Zhang [12] also use a unique multi-
stage modeling approach, proposing a robust multi-
stage LSTM model that integrates blog sentiment
analysis, quantifiable public opinion, and stock and
macroeconomic predictors to predict certain financial

markets.

Stationarity & White Noise

White noise is an important element within time se-
ries forecasting. Sequences of random numbers is the
essence of white noise within time series and if the time
series is truly white noise, it cannot be forecasted. If
the forecast errors are not a series of random numbers,
tests such as the Box-Ljung test can suggest improve-
ments which can be made to the forecast model. Appli-
cations in financial and economic forecasting suggests
that real forecasting problems and solutions account
for these sequences of random numbers.

Crone [6] examines white noise in time series fore-
casting with Forward Propagation Neural Networks by
observing distributions of symmetric and asymmetric
error functions which provided insight into minimizing
relevant white noise patterns and providing meaning
to what appeared to be white noise in traditional time
series lenses.

Cost Functions

Chong, Han, and Park [5] showed that an MSE cost
function together with an LSTM was successful in pre-
dicting real-valued returns in the Korean stock mar-
ket. In their study, MSE was used to model stock
price movement as a highly nonlinear function of the
history of the stock market, mixed with random Gaus-
sian noise. We explore the viability of using the mean
squared error (MSE) between the true BT'C stock price
and predicted model price as a cost function. By using
this cost function, we aim to model and forecast the
trend of the BTC stock price.

LSTMs and Stock Prediction

Numerous studies have shown the viability of LSTMs
in modeling financial time series. Fischer and Krauss
[7] show that LSTMs trained on S&P constituent stock
data outperform other machine learning methods such
as fully connected networks and logistic regression.
Nelson et. al. [10] uses LSTMs trained on technical
indicators to predict a binary indicator of positive or
negative price movement over a set number of time
steps with some successful results. Kim T. and Kim H.
[8] use an LSTM-CNN on a combination of price data
and candlestick image data to obtain superior results
to just using price data or image separately, indicat-
ing that feature representation can help the quality of
LSTMs model financial time series.

3 Deep Learning Methodology
and Approach

Long short-term memory is one of several versions of
Recurrent Neural Network (RNN) architecture. In this
section, we introduce LSTMs for forecasting the btc
closing price, because LSTMs do not require previous

information of a time series structure — due mainly to
its black-box properties [I1]. LSTMs are less subject
to time series stationarity. Popular research suggest
that these models are more flexible when working with
non-stationarity for forecasting [3]. Furthermore, the
approach of modeling data with traditional time series
models can be simplified by simply importing the data
directly into the model with limited amount of EDA,
data preparation, and traditional time series analytical
knowledge.

The following steps were taken to measure the pre-
dicted values distance from ground truth:

1. Imported bitcoin pricing from 2012-current, to
include open price, close price, high and low
prices, volume transacted, and percentage change
over a daily interval.

2. Plotted the distributions of each and determined
the threshold for the training data. Most of the
data is heavily skewed as to where past price
changes do not necessarily represent the current
trend nor the near-future trend of Bitcoin prices.
This includes testing features and time lengths
for stationarity, autocorrelation and partial auto-
correlations, seasonal and trend decomposition,
and white noise.

3. Standardized the data and created the training
and test structure.

4. Built several models using various parame-
ters (various activation functions, hidden nodes,
dropout rates, batch sizes, etc.).

5. Benchmarked the predicted values for four mod-
els versus the actuals.

3.1 Dataset

For the Bitcoin index, three categories of daily vari-
ables are used as model predictors. The first category
contains historical Bitcoin trading data, such as the
open, close, high, and low bitcoin prices of the day or
hour. The second category consists of volume and per-
centage change in price recorded during trading. These
variables are widely used in stock and commodities
trading. We also examine feature engineered variables
as the third type of inputs. Feature engineered vari-
ables include attributes’ variation, technical indicators,
exponentially weighted smoothing averages, seasonal
decomposition, and trend decomposition, etc.

3.1.1 Dataset Split

Both traditional and deep learning models use the same
training and test or holdout windows. The training
window is from January 1st, 2017 to February 2nd,
2019 and the test or holdout window is from February
3nd, 2019 to March 10th, 2019. The training window
could have been longer, however it was excluded before
January 1st 2017 due to lack of information and con-
tributed to the model’s inability to distinguish white
noise from meaningful information.

Each dataset contains the features Close, High,
Low, Open, Volume. The final week or our efforts
included significant training on data with volume re-
moved, as recent research suggesting a high amount of
variance in reported volume data across exchanges [9],
reminding us of the huge economic opportunity for data
providers that emphasize transparency and integrity.

We notice early on that changing the size of the test
set brought fluctuating levels of loss. One interesting
finding is that across a range of test set percentage of
split between 5% and 50%, we found that our model re-
sults were very sensitive to the size of the test set with
the best performing split at around 72% train and 28%
test.

3.2 Feature Engineering

We explore a variety of data pre-processing and aug-
mentation techniques gathered from the literature, and
implement them as part of our EDA (Exploratory Data
Analysis). We explored technical indicators, which are
often used in the financial sector to make trading de-
cisions and offer insight into the movement of the time
series. We experimented with the Relative Strength
Index, and Bollinger Bands. We also computed a sea-
sonal, trend, and residual decomposition, as well as
a 30, 50 and 200 day moving average. However, our
feature engineering resulted in preferring closing Price
and High Price for simplicity to ensure model sensitiv-
ity to the most widely distributed data features in the
financial asset space.

3.3 Architecture

We model this problem as a many-to-many real-valued
prediction task. One well performing architecture we
use is an encoder-decoder LSTM with a 1D Convolu-
tional layer to begin with. The Convolution layer has
a filter size of 10 time steps, and relu activation, with
no pooling. The output is passed to an LSTM encoder
layer, and produces an encoded version of the data,
having a variable size based on our hyper parameter
tuning. The output of the encoder is then replicated
and fed to the decoder as the input for each time step.
The decoder makes a single prediction at each time
step, where the output at each time step is passed to
a two layer fully connected network with a single out-
put unit with linear activation. The cost function used
is Mean Squared Error (MSE) between the true price
time series and the predicted time series, over the num-

ber of predictions forecasted by the model. All models
were trained with the Adam optimizer.

3.4 Hyper-parameter Tuning

The hyper-parameter decisions that were most effec-
tive at tuning the model were smaller number of hidden
units per layer, dropout, learning rate, and batch nor-
malization. We explored many more hyper-parameters
including number of layers and activation functions,
and learning rate decay early on but once an optimal
tuning crystallized we had a stable base to work off of.
WEe first notice that more than 300 epochs was not gen-
erally providing further decreases in loss, and 150 was
more than enough epochs across most hyper-parameter
combinations.

We methodically established ranges for candidate
hyper-parameters that were showing most impact on
loss and mean absolute percentage error in results early
on in testing(these include dropout, learning rate, hid-
den units, number of layers). Once the best among the
candidates was confirmed, we used to enumerate all
combinations and fine tune the remaining parameters.
The method is similar to the following pseudo-code,
but starting with many more hyper-parameter values,
especially in the outer loop, which were eventually nar-
rowed down:

for btch, units in [(w, 13, 15, 35)]:
for dpt in [0.1, 0.2, 0.3]:
for lr in [.00001, .001, .01]:
PriceRNN (
wlen=wlen ,
flen=flen ,
dropout=dpt ,
epochs =150,

batch_size=btch,

units=[units] * 4,

testpct =0.28,

Ir=Ir ,

datadir="/data”,
).run()

3.4.1 Learning Rate

Many learning rates were tried in the range .00001 - .1,
with .001 beating out every other order of magnitude.

3.4.2 Dropout

Dropout of 0.4 improved the volatility of the model sig-
nificantly from baseline (sans any regularization), but
after tuning, dropout was most effective at between .1
to .2

3.4.3 Hidden Units

We found a lower number of units was most effective for
increasing accuracy, reducing loss, and increasing over-
all stability of our metrics. 20-35 hidden units were the
best performing.

3.4.4 Batch Size
A batch size of between 5 and 40 worked best.

3.5 Results

We evaluated our top 25 models with mean absolute
percentage error (MAPE), which is defined as:

1 Z |Actual — Forecasted|
n |Actual)
The below chart shows our top models and their

predictions vs. the traditional time series models of
ARIMA and VAR, along with the actual price of BTC.

Traditional and LSTM Modeling for BTC Close Price

BTC Close Price

Date

As can be seen above, LSTM no. 14 outperformed
the top 25 models with a MAPE of 0.022 on the train-
ing set and 0.005 on the test dataset. Fourteen other
LSTMs outperformed the top performing VAR model
and the four ARIMA models ranked at the bottom of
the top 25 models list.

Hidden Dropou
Model Name |Features |Nodes/layer |t Length | Training Score |Test Score
Istm14 13 50 38% 100 0.022 0.005
Istm18 13 300 42% 130 0.003 0.042
Istm15 13 250 41% 120 0.067 0.051
Istm3 13 50 10% 100 0.122 0.083
VAR(2) 4 0.269 0.293
ARIMA(1,2,1) |1 0.527 0.477

In general, we notice that all LSTM models we
trained in our hyper-parameter search are able to
model the trend of the testing period early on to
some extent. However the models with inferior hyper-
parameters selections tend to lose the trend as the num-
ber of time steps in the prediction increases. More
interestingly, these inferior models lose the trend at
about the same time that the traditional models also
start to drift away from the trend.

The models we found to have good sets of hyper-
parameters were able to continue modeling the trend
quite well all the way through the testing period, and
this was the main difference between our top models
and the rest of the models we compare them to.

4 Conclusions

Deep Recurrent Neural Networks can be highly effec-
tive in tactical trading decision making support. There

are several main advantages to using deep learning
models over traditional time series to include: LSTMs
have the capability of storing time lags and errors in
the signal, which can be stored for long periods of time.
LSTMs can also store and use specific historical events,
whereas traditional models perform well with more re-
cent events and lacking any memory capabilities at all.

These models also outperformed traditional models
with raw data ingestion and did not require a method-
ology to diagnose traditional time series phenomenon.
The disadvantages of using deep learning models for
time series as opposed to traditional methods include:

1. Deep learning models can take longer to run. Our
LSTMSs required exponentially more data than
the traditional methods with regards to obtain-
ing out-performing and accurate models.

2. Deep learning models have several hyper-
parameters to tune where as traditional models
have few parameters to tune, but can have longer
EDA and data preparation phases.

Moreover, both traditional and deep learning mod-
els were unable to forecast accurately longer than 30
days into the future. For this study, the ARIMA and
VAR models could not accurately reproduce and fore-
cast 14-day windows well with this complex data due
to large amounts of white noise, nonlinear trends, and
complex data. With regards to the LSTM model and
their nonlinear activation functions, these models fit
the data best. The Best-in-Class (BIC) model, mod-
eled the non-linear data on the test set with a MAPE
of 0.005.

5 Future Work

We are optimistic that further questioning and gather-
ing additional insights along with better feature engi-
neering, more high quality data, rigorous optimization,
and additional techniques such as attention models and
other emerging research findings will give significant lift
to this research in the future.

At a technical level, we hope to expand upon and
improve our approach with better architectures and
rigorous hyper-parameter optimization (stochastic grid
or bayesian search). Our techniques can also be en-
hanced by continuous improvement in our software en-
gineering practice, including unit and integration test-
ing, and the integration of the ”daily sprint” prac-
tice. Finally, an increase in automation is desired to
avoid large amounts of manual tuning for new similar
datasets.

6 Code

Our code is on github at https://github.com/
ericsteen/crypto_data

References

[1]

2]

3]

(10]
(1]

(12]

Andrew. (2017). A. Mann. A New Methodology to Ezploit Predictive Power in (Open, High, Low, Close)
Data. 978-3-319-68611-0.

Yoshihara A. Matsubara T. Uehara K. (2016). Akita, R. Deep learning for stock prediction using numerical
and textual information. 2016 ieee/acis 15th international conference on computer and information science
(icis).

Izhak Shafran Andrew Senior, Hagim Sak. Context dependent phone models for Istm rnn acoustic modelling.
(n.d.).

Davis R. A. (2016). Brockwell, P. J. Introduction to time series and forecasting. cham: Springer interna-
tional publishing switzerland.

Han C. Park F. Chong, E. Deep learning networks for stock market analysis and prediction: Methodology,
data representations, and case studies. expert systems with applications.

S. (n.d.). Crone. Prediction of white noise time series using artificial neural networks and asym-
metric cost functions. proceedings of the international joint conference on neural networks, 2003.
doi:10.1109/ijenn.2003.1223950.

Krauss C. (2018) Fischer, T. Deep learning with long short-term memory networks for financial market
predictions.

Kim H. (2019) Kim, T. Forecasting stock prices with a feature fusion lstm-cnn model using different
representations of the same data.

Hong Kim Matthew Hougan and Micah Lerner. Economic and non-economic trading in bitcoin: Exploring
the real spot market for the world’s first digital commodity.

(2017) Nelson et. al. Stock market’s price movement prediction with lstm neural networks.

Marinaro M. (2002). Tagliaferri, R. Neural nets: Proceedings of the 12th Italian Workshop on Neural Nets,
Vietri sul Mare, Salerno, Italy, 17-19 May 2001. London: Springer.

Xu L. Zhang G. (2017). Zhuge, Q. Lstm neural network with emotional analysis for prediction of stock
price.

