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1 Abstract

We implemented NLP classifiers to detect online English
toxicity messages, which could be used to minimize
hate speech and support inclusive online communities.
Our data was taken from the Jigsaw Unintended Bias
in Toxicity Classification competition, and we worked
within the competition’s satisficing constraints and an
ROC-AUC combined with the generalized mean of Bias
AUCs. We pursued several models as well as opti-
mizing and bias-reducing methods. Our most effective
model was a rank ensemble between BERT, refined on
our dataset, and an LSTM with embeddings, auxiliary
labels, and data augmentation. Additionally, we imple-
mented attention and LSTM hyperparameter tuning, but
found these to be less effective within our constraints.

2 Introduction

The proliferation of hate speech in social media spaces
has created a dilemma for tech companies. Thus, we are
creating a classifier that detects toxicity in English online
messages. The input to our classifier is an online chat fo-
rum comment and the output is whether this comment
is toxic (ie. offensive or discriminatory against an iden-
tity group). Our training and testing are centered on a
Kaggle competition, "Unintended Bias in Toxicity.” Our
classifiers take in comment text originating from an on-
line political discussion platform and output whether or
not that text is toxic. In our work, we compare and com-
bine LSTM, Attention, and BERT models with various
bias reducing and optimization techniques (error anal-
ysis, data augmentation, auxiliary labels, ensemble av-
eraging, hyperparameter tuning, dropout, AUC score) to
pursue an accurate and less biased model. Possible appli-
cations of this classifier are detecting online harassment,
trolling, and other negative behavior on forums, groups,
and other forms of social media. A main challenge is ig-
noring words commonly misused as insults (e.g. failing
to account for the distinction between calling someone
gay as an insult and someone simply identifying oneself
as gay), which out-of-the-box algorithms fail to fully ac-
count for. (Lucas Dixon, 2018).
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3 Related Work

In ”"Reducing Gender Bias in Abusive Language Detec-
tion” by Ji Ho Park, they found that due to imbalances in
samples, abusive language detection models struggle to
avoid ethnic, sexuality, religious, and gender bias, being
more likely to interpret ”You are a good woman” as sex-
ist than ”You are a good man” due to the frequency with
which woman is negatively used within training set com-
ments. (Park, 2018). Thus, state of the art pre-trained
models such as Google’s BERT may be vulnerable to un-
intentional discrimination when evaluating toxicity, de-
spite having higher accuracy scores than less refined
models. Model bias is important to address to ensure that
we are not unintentionally discriminating against people
associated with these identity labels by being more likely
to censure their comments (Lucas Dixon, 2018). In "Nu-
anced metrics for measuring unintended bias with real
data for text classification” by Jigsaw, they defined a met-
ric for measuring the equality gap: the difference of true
positive rates of a subgroup and a background threshold
(Daniel Borkan).

With respect to models, we researched the best pre-
trained NLP models as well as different optimiza-
tion techniques, and pursued LSTMs, Attention (Lu-
cas Dixon, 2018), Bert (Devlin et al., 2018), Rank En-
semble Averaging(Xu et al., 2016; Kanakaraj and Gud-
deti, 2015), Auxiliary Labels (Nguyen et al., 2011), and
Data Augmentation (Lucas Dixon, 2018). For clarity and
to reduce redundancy, we will refer to our references
findings as these topics are mentioned in the following

pages.
4 Data and Features

Our data comes from the a Kaggle competition, Jig-
saw Unintended Bias in Toxicity Classification”(Jigsaw,
2019).

The data was initially released by Civil Comments, a
platform for online discussions. It contains the following
features:

e Text (comment_text): A string from the internet (fo-
rums, comments, etc).



e Target: Labels for types of toxicity in the text (e.g.
obscene, identity attack, insult, threat, etc)

e Identity Labels: Labels for identities mentioned in
the text (e.g. asian, atheist, bisexual, etc race,
religion, sexual orientation, gender, disability, and
other protected classes)

e Metadata: Labels for ratings, reacts, date created,
publication and article ids, annotator counts.

Our training set was 1,805,383 samples, with all the
above features. Our test set is 97,320 samples and only
contains the comment text. Its true values were obscured
to us and used by Kaggle to evaluate the competition.
The comments were typically remarks on a specific po-
litical issue.

All labels are in the range 0.0 - 1.0, where 1 is positive.
Annotators’ labels were averaged to result in the final
label. We round anything greater than or equal to 0.5 to
1 (True) and anything else to 0 (False). We found that
6% of the examples in our training set are toxic. Only
29% of the dataset had been annotated for identities.
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Figure 1: Of annotated data, number of samples by demographic.

4.1 Word Embeddings

We preproccessed all comment text by tokenizing and
vectorizing them by word. We used pretrained GloVe
embeddings to supplement our model’s vocabulary.
There are three main sources of GloVe embeddings:
Wikipedia, Common Crawl, and Twitter. We used the
Common Crawl embeddings, which is more reflective of
the internet at large, and which best reflect the disussion-
based vocabulary in our samples. (Pennington et al.,
2014)

4.2 Data Augmentation

”Measuring and Mitigating Unintended Bias In Text
Classification” noted the success of using augmenting
data with non-toxic examples of identity terms to re-
duce bias. In the aforementioned paper, they pulled
data from Wikipedia (Lucas Dixon, 2018). It occurred
to our team that the difference in sentence length and
formality between chat forums and websites such as

Wikipedia may skew our data. In addition to extract-
ing data from Wikipedia, we extracted these examples
from experience-based articles, editorials, and news, as
well as example sentences and encyclopedia articles for
a more neutral tone. To scope our search to our project
time-line, we primarily looked for examples for the most
affected demographics from our error analysis. We wrote
a script that labeled each sample based on the presence
of different identity keywords. This script also varied the
sample length, sometimes splitting text into sentences to
keep our model from being biased between longer and
shorter texts. We generated a total of 4,580 samples.

S Methods
5.1 [Evaluating Potential Models

We initially explored combining Naive Bayes with a
TfidfVectorizer component so as to scale down the
impact of frequent word tokens that offer little informa-
tive value, such as the” or ”a” (Trick, 2018; Jigsaw,
2018b). We ultimately decided against continuing with
this model on account of the naive bayes assumption
that words within a sentence are independent of each
other(sta, 2009). Following this, we experimented with
the GPT-2 model before determining its lack of perfor-
mance was because it works better on text generation
than text classification (H).

We then worked on a simple two-layer NN, an LSTM,
a CNN, and a CNN-LSTM, tuning hyper-parameters
along the way to evaluate which one we should pursue
further. We focused in particular on dropout as well
as numbers of filters and/or units. We evaluated each
of these by accuracy, although our later models would
pursue an equity-based metric.

Model ‘ Train Acc  Val Acc  Test Acc
Two-layer NN | 0.9335 0.9316  0.9089
LSTM 0.9554 0.9494  0.9505
CNN 0.9474 0.9467  0.9249
CNN-LSTM 0.9537 0.9501  0.9507

Table 1: Results from our initial models.

Hyperparameters: Two-layer NN:1 32-unit layer, relu-activation, sig-
moid activation. LSTM: 50 units, dropout 0.2, sigmoid activation.
CNN: 3 CONV-POOL layers(128 filters, dropout 0.35, maxpool size:
5). CNN-LSTM: 3 CONV-POOL layers (size 5, 128 filters; pool sz
2), 1 LSTM (50 units, dropout 0.5), sigmoid activation.

5.2 Error Analysis

Because our focus is on bias, we wanted to understand
which demographics were most adversely affected. By
finding the percentage of incorrectly classified samples
out of total samples for that demographic, we discov-
ered that three identity labels are particularly adversely
effected by bias: Black (4.4%), Muslim (2.9%), and ho-



mosexual (2.7%). Other labels had error in the 1.0 - 1.5
% range.
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Figure 2: Percent incorrectly classified out of number of samples,
for all demographics with larger than 10,000 samples.

Running a script to identify commonly mis-classified
keywords also helped us identify specific issues, such as
the disproportionate use of the words “crazy”, silly”,
and “insane”: words that also marginalize those with

mental health disorders.

5.3 Selecting Models

We used the CNN-LSTM from our initial results as our
baseline, given its accuracy as well as its faster runtime
than a pure LSTM. We looked into others’ public im-
plementations of different models and techniques to see
how others tried to solve the bias and accuracy trade-off.

With respect to models themselves, we (1) imple-
mented and refined BERT, a pretrained model for NLP,
which applies the bidirectional training of Transformers
to language modeling, (Devlin et al., 2018) (2) worked
with a better LSTM implementation and did hyperpa-
rameter tuning on it for learning rates and epochs, (3)
evaluated an LSTM and attention model, and (4) im-
plemented two types of ensemble averaging, linear and
rank.

5.4 Limitations

Our methods were limited by a few features of the Kag-
gle competition: run time limits and access to our test set.
This posed a problem for us because if our submission
ran longer than 2 hours on a Kaggle GPU, we wouldn’t
be able to submit to the competition. This meant that we
couldn’t get our final score (AUC) if training our mod-
els ran over two hours. Our lack of access to the ground
truth predictions also meant that we couldn’t get raw ac-
curacy, precision, or recall for our test set. Kaggle also
instills a 13 GB RAM limit, which also became an issue.
We’ve noted when this was an issue in the following sec-
tions. While these were frustrating at times, we got to
work with satisficing and optimizing constraints.

5.5 BERT

We were drawn into BERT: it has an enormous size of
24 Transformer blocks, 1024 hidden layers, and 340M
parameters , and is pre-trained on 40 epochs over a 3.3
billion word corpus (Devlin et al., 2018). We chose to
work with BERT’s uncased version to refrain from dis-
tinguishing words at the beginning of sentences from
words within a sentence’s interior. To implement and
tune BERT, we trained it on our training dataset. Given
BERT’s size, this took a long time. However, we were
able to train the model on the majority of the data and
tune hyper parameters such as dropout based on those
results.

5.6 LSTM

In contrast to conventional RNN and feed-forward neu-
ral networks, LSTMs can selectively remember impor-
tant patterns within long-term dependencies (Srivastava).
This is advantageous when we consider longer chunks of
comment text.

5.7 Adding Attention

We adopted an LSTM-Attention model to better repre-
sent sentence meaning when evaluating comments. At-
tention does so by identifying word relevance within
comments and aggregating highly-relevant words to cre-
ate sentence vectors. This process can similarly be per-
formed on a sentence level, determining which sentences
have high value in determining toxicity (Lucas Dixon,
2018).

5.8 Ensemble Averaging

Ensemble Averaging is implementing multiple models
and combining their results. We decided to focus on av-
eraging BERT and LSTM. We based this decision on The
University of Melbourne’s ensemble of neural networks
and word2vec based models for sentiment classification,
which demonstrated that combined models perform bet-
ter than any single classifier (Xu et al., 2016). This im-
provement is achieved because errors are averaged be-
tween models, leading to both models compensating for
the each others’ weaknesses while combining strengths.
We chose the LSTM and BERT models because those
were our best performing models.

Ensemble averaging performed especially well in sen-
timent classification for data from Twitter (Kanakaraj
and Guddeti, 2015) so we felt that it would be ideal for
our social platform-based data set. We considered vari-
ous methods, including linear averaging (equal or static
weights between models) and rank averaging (models
weighted based on their validation scores). We ulti-
mately selected these two because they were the most
intuitive for our task. The general equation for linear av-
eraging is shown below:
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where ¢ is the final prediction and w is the probabilis-
tic weight of each model’s output y; out of N models
(Hashem, 1997). Our final model uses rank averag-
ing, where the weights are proportional to the validation
scores of each model, due to its better performance.

5.9 Auxiliary Labels

In a paper titled “Learning Classification with Auxiliary
Probabilistic Information™, they state that providing la-
bels with probabilistic weights could increase the accu-
racy of classifiers (Nguyen et al., 2011). Many public
kernels at Kaggle attempted this as well. Intuitively,
this should improve performance because it teaches the
model to recognize and differentiate between your aux-
iliary labels. By adding auxiliary identity labels, our
model would then be able to classify toxicity along this
additional axis of understanding.

5.10 Hyperparameter Tuning

We optimized the LSTM hyperparameters by using the
fastai library to train the same Learner and NeuralNet
model used within the LSTM over multiple possible
learning rates and epochs, so as to compare the loss re-
sults of using different hyperparameters. The ideal hy-
perparameters are 400 epochs with a learning rate value
of 0.01, however, this violated our time constraints. As
such, we constrained our epoch number to 4 and experi-
mented with learning rates of 0.01 and 0.001.
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Figure 3: Impact of Epoch Number and Learning Rate on Loss: This
is a graph of learning rate versus loss with an epoch number of 1000.
An almost exact minimum loss value can be achieved through an
epoch number of 400. Other epoch numbers we experimented with
included 4, 6, 8, 40, 100, 200, and 500. The lowest loss result for
epoch number 100 was 0.9 in comparison to 0.4 for epoch number
400, showing clear improvements in a substantial rise in epoch num-
ber.

6 Results
6.1 Maetrics: Bias-based Area Under Curve

Our data analysis is based on measuring the Area Un-
der the Curve (AUC). The Kaggle competition we en-
tered provided a bias-based AUC equation, which we
used to evaluate both our train and test set. ROC-AUC

is a metric that optimizes for correct classifications of
both positive and negative results. AUC is the area un-
der the ROC curve, the ”probability that a model ranks
a random positive example more than a random negative
example.”(Google).In the context of our problem, AUC
evaluates the probability that a randomly selected toxic
example will receive a higher toxicity score than a ran-
domly selected neutral example (Daniel Borkan).

Our metric also involved Bias AUCs, the generalized
mean between subgroups of AUCs of restricted datasets.
These were restricted as follows: (1) Subgroup AUC:
examples that mention the specific identity subgroup, to
evaluate confusion within an identity, (2) BPSN (Back-
ground Positive, Subgroup Negative) AUC: non-toxic
examples that mention the identity and the toxic ex-
amples that do not, to evaluate if toxicity predictions
are higher than they should be, and (3) BNSP (Back-
ground Negative, Subgroup Positive) AUC: toxic ex-
amples that mention the identity and the non-toxic ex-
amples that do not, to evaluate if non-toxic predicitions
are higher than they should be. (Jigsaw, 2019)
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Figure 4: Equation for AUC. We used a generalized mean of bias
AUC to consider per-identity BIAS AUCs in one comprehensive
measurement. m? =the pth power-mean function. m = the bias met-
ric m calculated for subgroup s. N = number of identity subgroups
(Jigsaw, 2018a).

The overall ROC-AUC value was then combined with
the generalized mean of the Bias AUCs to result in a final
metric:

A
score = WOA UCm'me + Z WHMV (ms,(z)

a=1

Figure 5: Equation for final metric. A = the number of sub-metrics.
m;, = bias metric for identity subgroup s using submetric a. w, =
a weighting for the relative importance of each submetric (Jigsaw,
2018a).

6.2 BERT across modifications

Training BERT would take over 7 hours for each iter-
ation, so our main focus was tuning the fraction of the
training set used while keeping our entire runtime within
2 hours. As we trained BERT on larger fractions of the
dataset, we observed its AUC scores increasing consis-
tently. We were ultimately able to significantly increase
the accuracy of BERT. Training on 1/3 of the dataset
recorded an AUC of about .92, while our BERT model,
trained on 0.7 of the dataset got well above .93 accuracy.
We also found that increasing dropout was useful.



Model Hyperparameters Architecture
LSTM Lr: 0.001 Embedding layer with spatial dropout (0.3)
AT Tabels Epochs : 4 2 stacked bidirectional LSTM Layers
Binked diyn : > Batch size: 512 2 hidden linear layers (relu; input: LSTM layers max and avg pool)
& maxlen=300 2 relu output (1 for targets, 1 for auxiliary labels)
Lr: 0.001 Embedding layer with spatial dropout (0.3)
LSTM / ATTN 8 2 stacked bidirectional LSTM Layers
. Epochs : 4 -
Auxiliary Labels, : 2 attention layers
. Batch size: 512 . . . .
Embeddings 2 hidden linear layers (relu; input: attention layers, max and avg pool)
maxlen =220 .
2 relu output (1 for targets, 1 for auxiliary labels)
L 0’0900.2 Trained Googles pretrained and uncased BERT model with
BERT Batch size: 32 :
69.4% of the data for train and export.
Epochs : 1
Rank Ensemble Lr: 0.001
BERT + LSTM Epochs : 4 0.35 BERT
Auxiliary Labels,  Batch size: 512 0.65 LSTM
Embeddings maxlen =220

Table 2: Summary of Hyperparameters and Architecture of our final models

6.3 Auxiliary Labels and Embeddings

Our biggest AUC increase to our LSTMs came from hav-
ing them predict auxiliary labels and using embeddings,
a jump of 3% reaching an AUC comparable to that of
BERT. While we didn’t run these independently of each
other, the intuition is that the combination of a larger vo-
cabulary and teaching our models to distinguish between
identities helped them understand what toxicity means
with respect to different identities.

6.4 Attention

Our LSTM with Attention performed worse than our
LSTM without attention. This is likely because, as we
found while tuning, a high max length for our sequences
would cause us to run over our 13 GB RAM limit.

6.5 Data Augmentation

Data augmentation on our LSTMs provided mixed re-
sults. It improved our baseline and ensemble averaged
models but made our pure LSTM perform worse. Our
examples may have confused our LSTMs by containing
examples of people talking about harassment and other
negative experiences in connection to identity. The in-
creased performance of the ensemble averaged model,
however, indicates there may be some benefit the LSTM

Model Train Train DA  Test Test DA
BL 0.9618 0.9645 0.9067 0.9080
L 0.8769 0.8929 0.9364 0.9359
L/A 0.8188 0.8139 0.9346 0.9339
B N/A N/A 0.9365 N/A

EA N/A N/A 0.9391 0.9392

Table 3: AUC scores of our final models. Abbreviations: DA =
Data Aug, BL: Baseline (CNN-LSTM), L = LSTM, A = Attention, B
= BERT, EA = Ensemble Average (BERT + LSTM)

gained from this that our BERT model lacked.

6.6 Ensemble Averaging

The combinations of different models succeeded in in-
creasing our overall accuracy on the test sets, produc-
ing our best model. For example, the standalone BERT
and LSTM models had around 93 percent accuracy, but
by weighting the average outputs of the models we were
able to reach around 94 percent accuracy (93.914 to be
exact). Linear averaging increased our accuracy too (up
to around 93.8), but rank averaging increased it to be
where it is right now. We concluded that this meant that
our models indeed compensated for each other’s errors,
but that it was still important to weigh the better model’s
“opinion” the most.

7 Conclusions

We explored several avenues to improve our AUC met-
ric, an indicator of how biased our model is. We found
that ensemble averaging, auxiliary labels, and embed-
dings were incredibly effective, while — in fitting our
satisficing constraints — data augmentation, attention,
and specific hyperparameter tuning were less effective.

8 Future Work

Error analysis on our ensemble averaged model, would
help us further refine it. Using his analysis, we can iden-
tify problems in our data augmentation to further sup-
plement and create an even more equitable and effective
dataset. Other than that, we would like to train out mod-
els outside of competition contraints. We would have
liked to train our LSTM for 400 epochs, run our At-
tention model with longer sequence lengths, and further
refine BERT by training it on the aforementioned aug-
mented data. Thorough it all, we would further pursue
ensemble averaging.



9 Contributions

As requested, our individual teammate contributions are
as follows:

Amy Chen: Baseline Models (2-Layer NN, LSTM,
CNN-LSTM), Error Analysis (scripts and analysis), data
augmentation (collection, scripts for processing, using
augmented data on all our models, and analysis), calcu-
lating AUC on all our models, Poster design.

Farzaan Kaiyom: Baseline Model tuning (CNN), BERT
implementation and tuning, ensemble averaging model
research and implementation (linear and rank with BERT
and LSTM)

Kristen Anderson: Digging into and summarizing re-
search papers, BERT (first try), hyperparameter tuning
(LSTM), Baseline model (Naive Bayes w/ Tfidf Vector-
izer)

Team Efforts and Other Sources: Finding our final
models was a team effort, and most of the credit should
go to the creators of those models on and outside of
the Kaggle community (LSTM + Attention (Sang-Won),
BERT, BERT + LSTM ([ods.ai] Lyalikov Artyom)). We
also made use of Pytorch(Paszke et al., 2017), scikit (for
metrics) (Pedregosa et al., 2011), and Keras (Chollet
et al., 2015). Many thanks to Jigsaw for providing our
dataset as well as outlining metrics to follow. (Jigsaw,
2019)
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