Convolutional Neural Network for Predicting
Company Performance Based on Historical Financial
Statement Information

Justin Amezquita*
Department of Computer Science
Stanford University
jaa3b@stanford.edu

Abstract

This project aims to build a deep convolutional neural network (CNN) to predict
future company performance based on historical financial statement information
found in the company’s annual 10-K and quarterly 10-Q reports. A 1D CNN
was used where the channel depth corresponded to historical time periods such
that convolutions were taken through time. We trained a 5 layer CNN which
contained four convolution layers and one full-connected dense layer to predict
stock returns for a select group of 523 publicly traded companies between 2010 and
2018. Our model achieved a 33% accuracy, which was 7% better than the baseline
linear regression model. We also show that including more historical information
increased the model accuracy to 54%.

1 Introduction

Investors in public equities generally fall into two camps: fundamental investing and quantitative
investing. Fundamental investors reject the market efficiency hypothesis and instead believe that
a firm’s performance can be determined by intuition and insight gained from careful study of the
firm’s historical financial statements as well as close scrutiny of and relationships with management.
Quantitative investors, on the other hand, instead collect as much data as possible (including daily
or by-minute stock price/return, accounting information via quarterly and annual reports, relevant
news articles, satellite images, weather data, etc.) and build mathematical models that use this
data to predict stock returns usually with a short investing time horizon (i.e. intraday trading and
high frequency trading). However, this brute force technique lacks the intuition and insight that
has proved successful in the past by fundamental investors. This project hopes to bridge the two
camps by training a deep learning model using features selected with a fundamental investor mindset.
Fundamental investors use historical financial statement information to determine the health of a
business and make predictions on future firm performance. Our deep learning model will therefore
use this same information as input data and make predictions for firm performance, i.e. stock price,
one year forward from the date at which the input data was made publicly available. Features will be
selected based on signals shown to be statistically significant from academic studies in areas such
as price momentum (Chan et. al. 1996), value (Piotroski 2002), quality, shareholder return, risk
(Beneish 1999), safety, short interest (Fabozzi), to name a few. The goal of the project is to train
an Al model with data and features selected with a fundamental investing mindset that can predict
stock returns and relative ranking of stock returns with a given set of companies 1 year forward. This

*Alternate email: justin.amezquita@gmail.com

CS230: Deep Learning, Spring 2019, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

project idea is shared with another project I worked on concurrently for my Artificial Intelligence
class. Both projects have the same goal. This project focuses on building a CNN to predict stock
performance, while the other project focuses on building a deep fully-connected neural network as
well as LSTM for a larger dataset of companies.

2 Related work

A lot of work has been done to predict stock prices using deep learning architectures. Most of them
use recurrent neural networks such as LSTM [2] or support vector machines [3]. In either case, all of
the previous published work I found uses either pure price information (daily stock prices, high/low
price, bid/ask spread, volume, etc.) or alternative data such as news or twitter feed sentiment analysis
[4], [5]. This project is different in that it uses a convolutional neural network, architected in such
a way as to use the depth channel to perform convolutions through time. Additionally, this project
uses only historical financial statement information and stock price information to predict long-term
returns. This project was undertaken with a fundamental investor mind set, similar to how Fama
approaches his investment research [6]. We hope that this model will be able to be used as an aid for
fundamental investors throughout their investment research.

3 Dataset and Features

The dataset was taken from Wharton Research Data Services website [1], under the COMPUSTAT
and CRSP databases. COMPUSTAT is a database for financial statement information relating to active
and inactive companies. CRSP contains stock price information for active and inactive companies
in North America. Quarterly data was collected from both databases for a subset of 523 companies
listed in the S&P1500 Composite Index. Data for these companies was collected on a quarterly
basis between January 2010 and January 2019. For each quarterly data between January 2010 and
January 2018, historical financial information data was collected from COMPUSTAT and stock price
information was collected from CRSP. Both datasets were merged based on the date and a unique
identifier labeled GVKEY for each company. The subset of 523 companies represents the list of
companies that were part of the S&P1500 Composite Index for every quarter between January 2010
and January 2019. This necessarily introduces selection bias. Companies may have been included
in the S&P1500 Composite index in January 2010, but if they went bankrupt, delisted, or were
removed from the index for any other reason before January 2019, then the company would not be
included in the subset of 523 companies. Future work includes eliminating this bias by including all
companies ever listed in both the COMPUSTAT and CRSP databases. Note, although this would
reduce the selection bias previously described, it would not fully remove the bias for underlying
biases in both databases. For example, to be included in the COMPUSTAT database, a company
must have several years of publicly-released financial statement information. However, this selection
bias does not significantly undermine the results of this project because the goal is the see whether
historical financial information can be used to predict future performance. Therefore, we can interpret
the results as whether historical financial information has predictive power given that a company will
survive the time period under which it is examined.

Each data example consists of a vector of 103 input features and a label representing future company
performance. The input features represent widely-used fundamental investing metrics and ratios
derived from a company’s financial statements (balance sheet, income statement, and statement of
cash flows). See Figure 1 for a sample set of input features. The input data was normalized to be
between 0 and 1.

Book/Market Net Profit Margin Receivables/Current Assets Research and Development/Sales

Enterprise Value Multiple Operating Profit Margin Total Debt/EBITDA Shares Outstanding

Price/Operating Earnings Gross Profit Margin Free Cash Flow/Operating Cash Flow Current Price

Price/Earnings Return on Assets Quick Ratio Current Volume

Price/Sales Return on Equity Interest Coverage Ratio Price Change (3mo)

Price/Cash Flow Return on Capital Employed Current Ratio Price Change (6mo)

Dividend Payout Ratio Effective Tax Rate Cash Conversion Cycle Volume Change (3mo)

Gross Profit/Total Assets Long-term Debt/Inested Capital Inventory Turnover Volume Change (6mo)

Common Equity/Invested Capital Capitalization Ratio Asset Turnover Change in Shares Outstanding (3mo)

Figure 1: Sample set of input features

The output label was set to the quartile ranking for the one-year forward returns for the example
company. For example, say the training example was for Apple in the second quarter of 2014. Then,
the output label would be set by first calculated the actual returns for Apple stock between the second
quarter of 2015 and 2014. These returns were then ranked across the one year forward returns for all
523 companies in the dataset between mid 2014 and 2015.

The CNN was trained on 10,041 examples. 3,347 examples were used for development and (hy-
per)parameter tuning, and 3,348 examples were used for testing. This represents a train/dev/test split
of 60/20/20.

4 Methods

The approach uses a CNN to predict future company performance and compares the model accuracy
against two baseline models: a random stock picker and a linear regression. The random stock picker
selects predictions based on a normal distribution that is fit to the returns for a particular time period.
For example, if predicting Apple’s stock return for mid 2015, then the random stock picker randomly
selects a return value from a distribution fit to the real returns observed for all 523 companies in
the training set. After selecting a random return from this distribution, the output label is set to the
quartile that corresponds to the selected return. The four quartiles are labeled 0 (0-25th percentile), 1
(26-50th percentile), 2 (51-75th percentile), and 3 (76th-100th percentile).

The other baseline model was a linear regression, which outputs a predicted returns quartile for a
given example. Since the output is a continuous variable, the output is rounded to the nearest quartile
0-3.

The CNN has four 1-dimensional convolution layers, each of which is followed by batch normalization
and a dropout layer. After the fourth convolutional layer, the neurons are flattened, and then a dense,
fully-connected layer is applied, followed by batch normalization and a dropout layer. The output
layer is a 4-class softmax layer. The four convolutional layers have input size of 128, 64, 32, and 16
hidden units, respectively. After the flatten layer, the dense layer has 32 hidden units.

Conv1D(128)

Relu, Batchnorm, Dropout
v

Conv1D(64)

Relu, Batchnorm, Dropout
Relu, Batchnorm, Dropout

Relu, Batchnorm, Dropout

[Dense(32) |

Relu, Batchnorm, Dropout
: 4

4 Class Softmax

Figure 2: CNN with 4-class softmax output layer

A CNN architecture was used for the deep learning model because of its flexibility in folding in more
historical time periods for training. In other words, the baseline CNN uses input data from only one
fiscal quarter to predict 1 year forward returns. However, by using the depth channel in the CNN as
the time dimension, we can instead choose to use any number of prior quarters as input data to predict
1 year forward returns. For example, the training set input to the baseline CNN has dimension 10041
x 1 x 103, where 10,041 is the number of training examples, 1 is the number of prior quarters to use
as input, and 103 is the number of input features. However, to use a full year’s worth of quarterly
financials as input data, the input dimensions would be 2,510 x 4 x 103. Here, there are 2,510 training
examples, where each example takes the past year (4 quarters) of historical quarterly financials as
input to predict the next year’s returns.

The deep learning model minimizes the categorical cross entropy loss function shown in Figure 3.
There are 4 output classes which represent the quartile for the predicted returns.

M C
L) == Y 5y log Gy)

j=0i=0

Figure 3: Categorical cross entropy loss function

Figure 4 shows the CNN loss on the training and development sets during the loss minimization
iteration. Stochastic gradient descent was used to minimize the categorical cross entropy loss over
150 epochs.

Model loss

— Train
Dev

<
10 M
0 20 4 60 80 100 120 140
Epoch

Figure 4: Training and development loss

5 Experiments/Results/Discussion

The hyperparameters that were tuned for the CNN are listed in Figure 5. The dropout rate was set
to 30% because this value balanced the tradeoff between overfitting vs. underfitting to the training
data. The batch size of 64 kept computing time low while still achieving high testing performance.
Stochastic gradient descent was chosen for the optimizer, and the learning rate, decay rate, and
momentum values were set to reduce the computing time without sacrificing the results.

Hyperparameter Value
dropout rate 30%
batch size 64
epochs 150
optimizer SGD
learning rate 0.10
decay rate 1.00E-06
momentum 0.90

Figure 5: CNN hyperparameter tuning

Accuracy

Model Train Test True\Predicted Quartile 1 Quartile 2 Quartile 3 Quartile 4
Random Selector N/A 023 .

Linear Regression 0.26 026 Quartile 1 384 3 273 171
CNN 034 032 Quartile 2 295 4 340 167
CNN 1-yr priors 052 037 Quartile 3 311 3 337 225
CNN 2-yr priors 0.75 048 Quartile 4 314 3 241 277
CNN 8-yr priors 1.00 0.54

b) Confusion matrix
(a) Model Accuracy (b)

Figure 6: Performance Results

The most tuning and iteration occurred with respect to the neural network architecture. Different
numbers of convolutional layers as well as number of hidden units in each layer were tested by first
starting with one layer and then adding successive layers to improve performance on the development
dataset. A dense layer was added right before the softmax output layer in order to further reduce the
number of hidden units before the final output layer, with the aspiration that higher-level patterns
would be constructed in this layer.

Figure 6 shows the performance results for the CNN compared to the two baseline models. Accuracy
was chosen as the performance metric because the problem was set up as a 4-class classification and
the goal was to accurately classify the quartile in which a company’s returns would fall one year
forward. Figure 5(a) shows the model accuracy. The CNN had an accuracy of 32%, which was 9%
better than the random selector and 6% better than the linear regression base line model.

In addition to the standard CNN, which uses financial data from one quarter to predict returns,
additional CNN were trained using one, two, and eight years of input data. As expected, the accuracy
improved with longer look back periods. For the 8-yr priors CNN, the testing accuracy was 54%.
However, the model clearly overfit to the data. We used a higher dropout rate to mitigate against
overfitting, but it did not work as well for the 8-year model.

The classification report for the CNN is shown in Figure 7. Interestingly, the CNN classifies with a
higher precision for the top quartile. This discrepancy increases as more historical data is used for
prediction. This model trait suggests that healthy company fundamentals in prior quarters is a good
sign that the company will continue to outperform in the future.

CNN Classification Report

Class (quartile) Precision Recall F1-score
1 (low) 029 046 036
2 031 - 001
3 0.28 038 033
4 (high) 033 033 033

Figure 7: CNN classification report

6 Conclusion/Future Work

The CNN outperformed the baseline linear regression model by 6%. When more historical data was
given as input to train the CNN, the accuracy improved from 32% with a one quarter look-back to
54% with an eight year look-back. In the future, experimentation with recurrent neural network
architectures may help increase accuracy. Additionally, only 523 companies were used as training
data over an eight year time period. Collecting data from more companies (e.g. there have been over
29,000 publicly listed companies in North America since 1950), can help improve performance.

7 Contributions

This was a solo project. I was the only contributor, although advice from the TAs, in particular
Hoormazd Rezaei, was very helpful.

References

See [8] for a link to my github repository for this project.

[1] Wharton Research Data Services: https://wrds-web.wharton.upenn.edu/wrds/

[2] Chen, K., Zhou, Y., and Dai, F. (2015). A Istm-based method for stock returns prediction: A case study of
china stock market. In Big Data (Big Data0, 2015 IEEE International Conference on, pages 2823-2824. IEEE.

[3] Kim, K. -j. (2003). Financial time series forecasting using support vector machines. Neurocomputing,
55(1-2):307-319.

[4] Johan Bollen, Huina Mao, and Xiaojun Zeng. Twitter mood predicts the stock market. Journal of Computa-
tional Science, 2(1):178, 2011.

[5] Sanjiv R Das and Mike Y Chen. Yahoo! for amazon: Sentiment extraction from small talk on the web.
Management Science, 53(9):1375?71388, 2007.

[6] Eugene F Fama. The behavior of stock-market prices. The journal of Business, 38(1):347105, 1965.

[7]. Several essential python libraries were used in this project, namely: Tensorflow, Keras, Sklearn, Sci kit,
numpy, pandas.

[8] Link to my github repository for this project: https://github.com/jaa35/cs230_project.git

