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Abstract

In this work I investigate the localization of fires in wild-
fire images by classification of image superpixels. Build-
ing on the performance of previous deep convolutional neu-
ral networks developed for fire localization, I re-purpose
these models and fine tune them for classification of a dis-
tinct subtype of fire: wildfires. This work achieves maxi-
mal accuracy of 93% and F1 score of 0.84 for classifica-
tion of fire-containing superpixels, leading to an average
intersection-over-union score of 0.71 (SD = 0.2) for local-
ized fires. These metrics outperform the baseline model on
the wildfire data set, suggesting that wildfires indeed have
unique features—such as variation in color, shape, texture
(flame and/or smoke), and especially background—that re-
quire additional consideration in order to achieve accurate
localization.

1. Introduction

Every year since 2000, an average of 72,400 wildfires
burned an average of 7.0 million acres [6], resulting in sub-
stantial environmental, economic, and social losses. Com-
puter vision offers a promising strategy for early wildfire
localization. The increased use of general video surveil-
lance and deployment of unmanned aerial vehicles for fire
detection and monitoring provide ready methods to capture
images and videos. However, due to the scarcity of wild-
fire image and video databases, which are more costly to
obtain than those of fires in controlled or urban environ-
ments, a viable option for training small wildfire datasets is
needed. Here, I present a transfer learning approach that
improves our ability to specifically localize wildfires. It
takes as input isolated superpixels that are pre-segmented
from images of wildfires. I fine tune a reduced Inception
v1 convolutional neural network to classify wildfire super-
pixels as fire or non-fire. The positively predicted (fire) su-
perpixels for each image are then reconstructed to localize
the predicted fire within the original image space. Finally, I
generate saliency maps to visualize the spatial support of a
particular class in a given image.

2. Related Work
2.1. Fire localization

Several groups have attempted pixel-level fire identifica-
tion for the purpose of non-temporal fire localization (i.e.,
not relying on measurements of dynamic flame movement)
using deep neural networks, either end-to-end or for classi-
fication of image patches or superpixels pre-processed from
fire images. Chenebert et al. [3] isolated candidate fire
regions using a basic color spectroscopy approach, which
were then classified using a neural network with 88.1%
accuracy (architecture not provided). Zhao et al. [13]
achieved 98% accuracy by using a Bayesian saliency detec-
tion method plus logisitic regression classifier to first seg-
ment out core fire areas in images from unmanned aerial
vehicles then classify them as fire/nonfire using a CNN
based on AlexNet. Akhloufi et al. [2] achieved average F1
score of 0.91 and accuracy of 93.17% using a U-Net-based
architecture and Soerensen-Dice similarity coefficient as a
loss function to segment forest fires out from background.
Zhang et al. [12] used a cascading CNN to both clas-
sify whole video frames as fire/nonfire and identify fire-
containing patches to localize the fires, with 90% accuracy.
Dunnings and Breckon [4] achieved 89% accuracy in clas-
sifying superpixels that were pre-segmented from urban fire
images for in-frame localization, using a reduced complex-
ity CNN based on Inception v1.

2.2. Superpixel segmentation

Superpixel segmentation is controlled over-segmentation
of an image into a pre-defined number of fairly homoge-
neous regions. It is an important complement to computer
vision. Superpixels are advantageous in that they group
pixels into perceptually meaningful regions that replace the
grids used in sliding window approaches, reducing image
patch redundancy and thus the complexity of subsequent
image processing tasks [5]. Meanwhile, superpixels to-
gether maintain all the characteristics of the image since
the contours are defined by algorithms such as K-means
that group pixels using a distance metric based on color
and texture (see Fig. 3, step 2 for an example). In par-



Figure 1. InceptionV1-OnFire

ticular, superpixels are useful for remote sensing images—a
primary method by which wildfires are sensed and tracked—
for which the target area may be very small relative to the
frame. SLIC superpixel segmentation (described in 4.2) [1]
combined with CNN-based classification achieved similar
classification accuracy but dramatically reduced compute
time compared to the sliding window approach on the IS-
PRS remote sensing semantic labeling benchmark [5].

3. Dataset and Features

The collection of wildfire images was downloaded
with permission from the Corsican Fire Database
(http://ctdb.univ-corse.fr) [11], and comprises 595 im-
ages each paired with a binary, ground truth, same-sized
image (Fig. 2B).

Figure 2. Examples of
original images and in-
put. A) original image,
B) ground truth image,
C) fire superpixel (in-
put), D) non-fire super-
pixel (input).

3.1. Data preprocessing

The workflow is illustrated in Fig. 3. The images are
shuffled and split 7:2:1 into train/dev/test sets, resized to
224x224 pixels (but not normalized, to be consistent with
the pre-training input) and segmented into 100 superpixels,
resulting in 41,594/11,899/6,000 isolated superpixels in the
train/val/test sets, respectively. Each superpixel is isolated
in a new 224x224x3 image in which only pixels contained
within the superpixel region retain their RGB values; all
other pixels are set at (0,0,0). Instead of using bounding
boxes like [4], each isolated superpixel image is labeled
“fire” if > 25% of the superpixel overlaps with the orig-
inating image's ground truth pair. Since splitting is done
prior to superpixel segmentation, it ensures that both classes
are equally represented in all splits. Indeed, about 20% of
each set are fire superpixels and the rest are non-fire. The
non-fire superpixels contain a mix of typical forest elements
including trees, grass, and sky.

3.2. Data augmentation

Training set images were augmented on the fly where
indicated by adding random blur using a Gaussian filter with
sigma = 5 for the Gaussian kernel and allowing randomly
for up to three 90-degree rotations. These seemed the most
logical choice for the expected test set distribution.

4. Methods
4.1. Model

A pre-trained, reduced Inception vl [10] model was
adopted from Dunnings and Breckon [4] (Fig. 1, described
in 2.1). It contains three rather than the usual nine inception
modules, allowing it to (1) retain the same level of accuracy
on the dataset used for pre-training (urban fires) as the orig-
inal architecture while reducing the number of parameters,
and (2) reduce the potential for overfitting by reducing ar-
chitecture complexity. Dropout with keep_prob = 0.4 is
applied after the average pooling filter and before the two-
node fully connected layer. The output activation is a soft-
max function, which computes the normalized probabilities
across classes, as this is a single-label classification task.
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4.2. SLIC superpixel segmentation

Simple linear iterative clustering (SLIC) [!] was used to
segment images into regions that are similar in color and
texture. It adapts K-means clustering to reduced spatial di-
mensions for computational efficiency. The distance mea-
sure D combines color proximity (d., in CIELAB color
space) and spatial proximity (d,) and normalizes each by
its respective maximum within a cluster (Vs and Ny).

dc = \/(lj — 12)2 + (aj — ai)Q + (b] - bl)Q
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4.3. Loss function

The categorical cross entropy loss was used

L=— ZWOQZL‘ + (1 —yi)log(1 — 4;) 3)

4.4. Metrics

The primary metrics were accuracy and F1 score. F1
score is a harmonic average of precision and recall that bet-
ter reflects a model’s performance when the classes are not
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Figure 3. Experimental workflow
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Intersection-over-Union (IoU), or Jaccard index, is typically
a measure of similarity between predicted and ground truth
bounding boxes in object detection. Instead of bounding
boxes, I use merged superpixels to measure how well a fire
can be localized. It is a more stringent method, but wildfires
in particular can rarely be well defined by a rectangle.
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4.5. Class saliency

This method ranks the pixels of an image [, based on
their influence on the class score S¢(I) [9], which can be
approximated by

S.(I)~wlT+b

where w is the derivative of S. with respect to the image I
at the point (image) Iy:
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The map M is generated at each pixel (i, j) by taking the
maximum magnitude of w across all color channels

M;; = max;|wp(; j,e) @)

5. Experiments/Results/Discussion
5.1. Model fine tuning

Evaluating the test set on the original model resulted in
a poor F1 and IoU score (Table 1), with misclassification

of superpixels containing thin and wispy fires, suggesting
that it could be improved by fine tuning of later layers,
which contain lower level features. The first two inception
modules were frozen, allowing updates to only the third in-
ception module during backpropagation. The pre-trained
model was fine tuned by loading the pre-trained weights to
all except the softmax layer and training for at least 100
epochs. I tested batch sizes of 64 and 256. While smaller
batch sizes tend to be noisier and have a slight regularization
effect, larger batch sizes allow for a more stable model and
in this case do not really slow down learning even though
there are fewer updates per epoch.

The Adam optimization algorithm [7] was tested be-
cause it might allow the model to converge more quickly.
Adam optimization implements adaptive learning rates for
different parameters by storing both the exponentially de-
caying average of past squared gradients (like RMSProp)
and past gradients (like momentum). I reasoned that, in
general, learning rate adaptation or decay—generally, a re-
duced learning rate—might be useful as the model already
had some familiarity with fire as input. I tuned the learn-
ing rate to 0.001, which was originally used for training the
model and worked well; trials with & = 0.01 did not con-
verge. The model converged after about 70 epochs, however
it clearly overfit the data, as training accuracy was 99% (not
shown) while validation accuracy was only 93% (Table 1)
and validation loss increased after 30 epochs (Fig. 4). Early
stopping allowed me to extract the weights before the model
started to overfit.

The momentum optimization algorithm [8] was also
tested, in part because it was successfully used to train
the original model. I implemented learning rate decay of
o = q - g(oalsers/100) where z = 0.97 or z = 0.993 and
a = 0.01. For z = 0.97, learning appeared to converge,
but at a higher loss and lower training accuracy (94%) than
the Adam-optimized model after 100 epochs (Fig. 4); de-
creasing the decay rate with x = 0.993 allowed the model
to reach a lower training loss and training accuracy of 97%



but it started to overfit the validation set after 100 epochs
and validation accuracy did not improve (not shown).

For all successful fine-tuned models, the F1 score of
0.83-0.84 for predicting fire on the test set was a marked
improvement over that of 0.70 obtained from the original,
un-tuned model (Table 1, also see Fig. 5A). I consider F1
score to be a better reflection of performance because the
proportion of fire to nonfire superpixels was 1:4, not 1:1.

H Model Accuracy F1  IoU H
Original pre-trained 0.90 0.70 0.49
Adam 0.93 0.84 0.71
Adam w/data aug. 0.93 0.83 0.69
Momentum w/« decay 0.93 0.84 0.70

Table 1. Metrics evaluated on the models for the wildfire test set

I reasoned that one technique to reduce overfitting is
data augmentation. I fine tuned the original model with an
Adam optimizer, augmenting images in the training set as
described in section 3.2. Since the original model was pre-
trained on fire-type images, I anticipated the model might
at first perform better on the validation than the training
set, as the former was not augmented. Based on the loss
curves, this model was no longer overfitting (Fig. 4; 100
epochs shown; loss did not decrease if a > 0.001). After
300 epochs the model had not converged and training accu-
racy was 90%, but validation accuracy was not improving
beyond 93%. It appears that the model is slower to train
but augmentation has mitigated overfitting. Manual learn-
ing rate decay might be a good option to improve training.

Training Loss Validation Loss
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Figure 4. Loss curves over 100 epochs. Top to bottom: adam, mo-
mentum w/learning rate decay, adam w/data augmentation. Note
the difference in y-axis scales.

5.2. Fire reconstruction and localization

After evaluating the fine tuned model on the test set,
I used the predictions to reconstruct and localize the pre-
dicted fire within each image by merging positively pre-
dicted superpixels (binary version). I then computed the
IoU score relative to the merged ground truth positive bi-
nary superpixels using bitwise operators (Fig. 3 and 6).
The average IoU score computed after evaluating the wild-
fire test set on the fine tuned model was 0.71 (distribution
in Fig. 5B), a marked improvement over the score of 0.49
obtained using the original, un-tuned model (Table 1).

A Normalized confusion matrix B

Distribution of loU scores

True label
Non-fire

Fire

Non-fire Fire
Predicted label

Figure 5. A) Representative normalized confusion matrix for iso-
lated superpixel classification. B) Histogram showing distribution
of IoU scores for reconstructed wildfires.

Figure 6. Examples of original images and fires reconstructed from
classified superpixels (following image resizing).

5.3. Error analysis

I manually examined correctly and incorrectly classified
superpixels and images with small and large IoU scores
(Fig. 7). Incorrectly classified superpixels tended to contain
colors similar to fire, like orange fire-glow or orange/yellow
grass. This observation suggests that the model classifies
fires in large part based on color and less on shapes, which
makes sense given the lack of context provided in a super-
pixel. Images with low IoU scores (< 0.5) tended to have
thin, spread out flames while those with high IoU scores
(> 0.5) were of spatially concentrated fires. One benefit
of the pre-segmentation method appears to be the ability to
reconstruct distinct fires within the same frame. U-Net has
also proven its ability to identify distinct fires on the same
data set used in this project [2].
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Figure 7. Error analysis. A) correctly classified, B) incorrectly
classified. Resized original images and reconstructed classified

superpixels.

5.4. Saliency maps

I generated saliency maps [9] to gain some intuition as to
which pixels need to be changed the least to have the great-
est effect on class prediction. In all cases, the network has
identified the superpixel as the only relevant information-
containing region of the input, characterized by the absence
of signal everywhere else. Interestingly, saliency maps
show larger magnitudes on the edge and interior of super-
pixels where there are not fire pixels (Fig. 8). One hypoth-
esis is that fire is fairly easy to recognize, whether yellow,
orange, or red, so the magnitude of fire pixels is less. Greens
and light browns (the latter of which are sometimes misclas-
sified) are less easy to predict but are close in RGB value.
Consequently, pixels in those colors are more active in con-
tributing to class prediction.

[+]

fire non-fire

fire
Figure 8. Magnified input images (top) and class saliency maps
showing magnitude of the saliency (bottom).

5.5. Local wildfire images

I downloaded a number of public domain images from
recent wildfires in California, Colorado, and Oregon to test
the localization method developed in this project. From the
examples in Fig. 9, we can see that the model correctly pre-
dicts fire regions while excluding smoke, but does classify
areas of orange fire-glow as having fire as might be expected
due to the lack of context, discussed in 5.3.

Figure 9. Examples from recent California, Colorado, and Oregon
fires including the Woosley Fire, Camp Fire, and Carr Fire. Origi-
nal images (left); resized and reconstructed superpixels (right).

6. Conclusion/Future Work

The fine tuned model shows a marked improvement
over the original model that was pre-trained on urban-type
fire superpixels, suggesting that wildfire superpixels have
unique features requiring additional training. The lack of
context in close-up images where superpixels may contain
entirely fire appears to influence misclassification errors. In
the future, training the model on remote sensing images
would allow the superpixel approach to prove its efficiency
and provide a meaningful benchmark for the types of im-
ages used to assist Forest Service personnel in tracking fires.

To improve the specific model used in this project, ad-
ditional regularization methods could be pursued to reduce
overfitting without requiring early stopping, hopefully al-
lowing validation and test accuracy to exceed the current
ceiling of 93%, such as reducing keep_prob when apply-
ing dropout. Changing the threshold for ground truth la-
beling might affect model performance. A more extensive
random but informed search for hyperparameters could be
attempted; however, since the model was pre-trained, the vi-
able search space was already reduced. Finally, it would be
feasible to unfreeze additional inception modules for train-
ing given the size of the training set used here.

7. Code and Dependencies

Code:
localization-cnn.
fire-detection-cnn,
tensorpack.

https://github.com/laurapspector/wildfire-
Dependencies:  tensorflow, tflearn,
opencv-contrib-python, saliency,

8. Contributions

L.S. conceived of and conducted the experiments. Many
thanks to the CS230 teaching staff for their support.
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