Conditional Generative Adversarial Models for
Generating Images of Food

Eric Wu Sudip Guha

wueric@stanford.edu sudipg@stanford.edu

Abstract

We present a conditional generative adversarial network for generating class con-
ditioned food images. We train several model architectures, including vanilla
cWGAN-GP, ResNet cWGAN-GP, and AC-WGAN-GP, on the Food-101 dataset to
generate images of food conditioned on the category. We then evaluate the quality,
diversity, and conditioning of these models by calculating Inception score and by
using a classifier to classify the generated images into their intended categories.

1 Introduction

Using conditional generative adversarial networks (conditional GANs) to generate images given a
conditional input is currently an active area of research. Conditional GANs consist of two neural
networks, a generator network that synthesizes a fake image given a conditional input, and a discrim-
inator network that determines whether or not an image was generated by the generator network,
trained in an adversarial manner (1). Generating images of food using GANSs is a particularly chal-
lenging problem, due to the highly varied fine geometric structure of food. In this paper, we train
several conditional GAN models using the Food-101 dataset to generate images of food based on
category using a one-hot vector of food category labels as the condition, and evaluate the models
based on the quality and diversity of the images produced as well as the efficacy of the conditioning.

2 Related work

There have been several previous efforts to generate images of food given some condition. Using
the much larger RecipelM dataset, Bar El et al. trained a conditional StackGAN++ to generate
images of food conditioned on text annotation (2). The images generated by this model tended to
look pleasing to the eye and appeared qualitatively to look like food. By human inspection, the model
generally performed well for images of foods with uniform consistency (i.e. porridge), but performed
poorly for images of food with well-defined geometric structure (i.e. burgers). Ito ef al. (3) trained
c¢GAN and cWGAN-GP models to generate conditional images of ramen conditioned on categorical
one-hot vectors, and images of food conditioned on text embeddings. Like the Bar El et al. paper,
the images generated by these models looked like food but lacked most of the detailed geometric
structure expected in a real image.

3 Dataset and Preprocessing

We used the Food-101 dataset provided by ETH Zurich (4). Food-101 consists of 101,000 images of
food, with 1,000 images each for 101 different categories of food. Food-101 contains mislabeled
images, and images within the same class have substantial variance in terms of subject matter, lighting
conditions, and background. Example images are shown in Figure 1.

CS230: Deep Learning, Spring 2019, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

Tiramisu

Apple pie

Ramen &

Waffles i

%%
Caesar salad " P
i f *

Figure 1: Example images drawn from a few categories of the Food-101 dataset. Note the substantial
variation in the images in subject matter, lighting conditions, and background, and the mislabeled
image (the second image for Caesar salad).

We used a subset of 10 classes to train our models to reduce the difficulty of conditional image
generation. These 10 classes were: (1) Caesar salad; (2) tiramisu; (3) clam chowder; (4) pancakes; (5)
guacamole; (6) pad thai; (7) ramen; (8) spaghetti bolognese; (9) waffles; and (10) apple pie. These
classes were chosen for their variety of structure and color.

3.1 Data Preprocessing and Augmentation
We preprocessed the images in the following way: (1) Crop the image into the largest possible square

located at the center; (2) Resample and resize the image to 64x64; (3) Rescale the pixel values of the
image from [0, 255] to [-1, 1].

We augmented the images at training time by applying random left/right flips, random color modifica-
tions, and random crops followed by resampling back to 64x64.

4 Methods

4.1 Models

) Generator Model E/ -
P a— Input image : ‘ j 4 g
| | : ‘ ‘éx|s,54 8xBx128 4x4x256
E 32x32x32
. B4x64x3 i

3 Generated Image
L3 [Ba(Bm
8 | R . Convolutional Layers
Bx8x256 16,16x128 .
X3 :

100x1 noise
1024

1024

1
=
1
g

323264
64x84,
—

| vmml one hot | [
512

e - . Discriminator Model

‘ 10x1 category one hot
512

Dense Layers

Dense Layers

Figure 2: Simplified block diagrams of our generator and discriminator models.

Our model is a GAN with a generator and discriminator. The inputs to the generator are a 100-
dimensional noise vector z and a 10-dimensional one-hot label vector y identifying the class of the
real image . The generator outputs a 64x64x3 image = which is bounded to the (-1, 1) range because
the final layer of the generator has a tanh activation.

The Discriminator network takes either = or and the one-hot class label y. The output of the
discriminator in the cWGAN-GP and ResNet cWGAN-GP case was a single logit D(x) corresponding
to whether the image is real or generated. Meanwhile, in the AC-WGAN-GP case, the discriminator
determines both whether the image was real or generated, and what class the image is, and hence
outputs both a single logit D(x) as well as another ten-dimensional logit corresponding to the class
of the image.

Batch normalization in the generator improved training speed (higher learning rate and higher quality
images). However, we did notice that using batch normalization had the effect of making generated
images in the same batch appear similar (e.g. they could all have a similar tint). Once we switched to
the gradient penalty loss, we removed batch normalization in the discriminator model as suggested
by the authors.

The generator model encodes the condition and noise by passing each through separate dense layers,
then combines them by concatenating the encoded versions and passing that vector through a final
dense layer. We then reshape the resulting vector and pass it through several deconvolutional
(conv2d_transpose) layers to produce the generated image. The Discriminator model passes the input
image through several convolutional layers and the encoded image is combined with the condition
vector by concatenating encoded (through dense layers) version of these vectors together. The
concatenated encodings are then passed through dense layers to get a real valued scalar output. We
found that the use of leaky ReLU as the activation function helped the model perform better as
fewer neurons would "die" while training. As discussed in the results section, replacing our standard
convolutional blocks with Residual blocks improved image quality.

4.2 Loss functions

To start, we tried several loss functions on an unconditioned version of the problem where g
indicates whether the example is from the real or generated distribution. The first loss we tried was
the non-saturating version of the vanilla GAN loss (5):

J(@) = —Ellog(D(G(2)))] (1
I = —E[yrea log(D())] — E[(1 — ygen)] log(1 — D(G(2))) @

We found this to be very sensitive to hyperparameter choice and random initialization which was
not desirable. Very low learning rates let the losses converge better but took too long to train while
faster learning rates (> 0.0001) led to mode collapse very quickly. To remedy this, we switched to
the Wasserstein loss which proved to be much less susceptible to training instability and less sensitive
to hyperparameter selection. Wassterstein GAN loss used in our work is based off the approximation
by Arjovsky et al (6). Wasserstein GAN attempts to minimize an approximation of the intractible
earth mover distance between the distribution of real and generated images. One of the requirements
of the approximation described in (6) is that the weights of a discriminator function D must lie in
a ’compact’ space and that D is a K-Lipshitz function (meaning the first derivative of the function
is bounded everywhere to be less than a constant). The authors of the WGAN paper enforce this
constraint by clipping the weights of the network D to be within bounds [—c, ¢]. Another difference
is that the discriminator output can no longer be interpreted as a probability and is a real value.

J©@ = —E[D(G(2))] 3)
JP) = E[D(z)] — E[D(G(2))] “)

The authors of the original WGAN paper recognize that weight clipping is a poor way to enforce
a Lipschitz constraint as the choice of hyperparameter c can cause vanishing gradients. We experi-
mented with this and found that just as the authors claimed, the GAN became more resistant to mode
collapse (where the GAN generates very similar images) and the generator was able to learn well
even when the discriminator loss was very low. This version of our unconditional GAN model was
much less sensitive to learning rate and other hyperparameter changes. However, we found that this
method still had some shortcomings. Our generated images stopped improving at around 35 epochs
and though the images looked reasonable at this point, they deteriorated and suffered mode collapse
within 50-60 epochs. We believe this could be due to a combination of the dataset not being well

structured (have similar layout and structure of images) and the flaws in the weight clipping method.
As such, we implemented WGAN-GP and found it to be a better algorithm. WGAN-GP improves
upon the traditional WGAN by enforcing the 1-Lipshitz contraint on the discriminator function with a
gradient penalty instead of weight clipping. The equations used for implementing this are as follows:

e~ U|0,1]
z=G(z)
T=ex+ (1—¢€)z
J(© = —E[D(G(2))])
JP) = E[D(&) — D(z) + A(||[VzD(#)]]2 — 1)?] (6)

The authors of the WGAN-GP note that their method allows for the discriminator to learn more
complex functions and reduces the vanishing/exploding gradient problem. We removed batch
normalization in the discriminator model as recommended by the authors of the improved WGAN
paper and used hyperparameters suggested in their paper: Adam optimizer with learning rate 0.0001,
b1 =0, B2 = 0.9, A\ = 10. We train the discriminator for 5 steps for each train step for the generator.
Using this approach, our model performance was improved significantly. Tweaking hyperparameters
further did not produce significant wins.

To achieve better conditioning, we also implemented an AC-wGAN-GP based on (7) and (8). The
loss function for this model consisted of the wGAN-GP loss functions with additional categorical
cross-entropy loss terms corresponding to the discriminator miscategorization loss for class labels Y’

(8).

A- (Ellogp(y =Y | z)] + Eflogp(y =Y |)]) (7
was added to the discriminator loss and
B - (Ellogp(y =Y | 7)]) ®)

was added to the generator loss. Hyperparameters A and B were setto A = 1 and B = 0.1 as
suggested by the source code of (7).

5 Results and Discussion

Our criteria in evaluating images were (1) diversity and quality within the same class; and (2) the
ability to differentiate and identify images between each class. We therefore evaluated our images
using the following methods: (1) qualitative visual inspection; (2) Inception score (9); and (3) using
the classification accuracy of a separately trained classifier.

5.1 Qualitative evaluation of images

We used qualitative visual evaluation to determine the quality of images and the efficacy of condi-
tioning in our models. Example images generated by the ResNet cWGAN-GP, cWGAN-GP and the
AC-wGAN-GP models are shown in Figure 3. The ResNet model produced sharper images that were
more pleasing to the eye. The AC-wGAN-GP model appeared to be better for conditioning, which
makes sense, given that the AC-wGAN-GP loss functions contain additional categorical loss terms.
Our images replicated some of the geometric structure of food (the pancakes are round and have
sharp edges, and some of the tiramisu and apple pie appear as well-defined slices), but struggled with
details (leaves in the Caesar salad are not well-formed, waffles lack consistent grid patterns).

5.2 Inception score

Inception score uses the output of an Inception network pretrained on ImageNet to evaluate the
quality and diversity of the images.

15 = exp { Bav, i (00 |) |)]} ©

4

Caesar salad
Tiramisu
Clam chowder §

Pancakes
Guacamole
Pad thai
Ramen
Bolognese
Waffles

Apple pie

Figure 3: Example conditional images generated, in left-to-right order, by the ResNet cWGAN-GP,
vanilla cWGAN-GP, and the AC-WGAN-GP, respectively.

Z is the image generated by the GAN, p(y | &) is the conditional probability distribution of the class
of & determined by the Inception network, and p(y) = [p(y | Z)p(Z) is the marginal distribution.
Higher Inception scores correlate with better image quality and diversity, because good images
should be classified as a single class with high probability, making the entropy of p(yZ) be low,
while the entropy of p(y) should be high for a diverse set of &, making Dgr (p(y | Z) || p(y)) large.
Conversely, GANs that produce low-quality poorly defined images or suffer from mode collapse
should tend to have low Inception scores.

Inception score is an imperfect metric for evaluating conditional GANs. Diversity does not translate
well to conditional GANSs, since conditioning reduces the entropy of p(y). Furthermore, there is no
clear-cut way of combining Inception scores across the different conditions. We chose to calculate
Inception scores separately for each class and report the average across classes.

Despite these limitations, Inception score is useful for measuring the quality/sharpness of images
and the amount of mode collapse. Inception scores plotted during training are shown in Figure 4
Inception scores for the ResNet typically were higher than those for the AC-WGAN and vanilla GAN.
This appeared to be due to the sharper, better-defined images generated by the ResNet model. The
Inception scores declined near the end of training for the ResNet, corresponding to visibly grainier
images. Inception scores for all of our models varied between 4 and 4.5. For reference, the maximum
achievable Inception score is 1000, and state-of-the-art Inception scores are around 10 (10). As a
comparison, the Bar El et al. paper achieved an Inception score of around 4.55 (2) for their food
images.

5.3 Classifier accuracy to evaluate conditioning

We trained a separate CNN classifier using the same subset of the Food-101 dataset, and used the
classification accuracy of that classifier as a metric for the effectiveness of conditioning. This is a
simple metric — if the classifier accurately classifies the generated images, then the GAN-generated
images are likely well-formed and from the correct class.

Despite our best efforts, our classifier overfit to the training data (90+% training accuracy but 65%
test accuracy). Thus, we expected that the classifier will perform relatively poorly when applied to
the generated images.

Inception score vs. training iterations Classifier accuracy vs. training iterations

4.5 3 A 0.22
A 7 \
A ~~~ AN NS A - 1 I

20 AL //\/A// YN SEAN , 020 ‘ “‘ b “ |1 1l
N Zos A ik At
S 35 / N :_5, Ty | UL i M\
g : [/ 2 0.16 | L LR EE b R
1/ - il
o : n
£ / —— ResNet éo_lz —— ResNet

25 / —— ACGAN —— ACGAN

—— cWGAN-GP 010 | —— cWGAN-GP
0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000
Iteration Iteration

Figure 4: Inception score and classifier accuracy for each of the models.

Classifier accuracy for the three models are shown in the right panel of Figure 4. Indeed, classifier
performance is poor. Classifier accuracy for all three models started at 10% (no better than random
chance) at the beginning of training, and reached around 20% by the end of training. Given the
limitations of our classifier, we conclude that the conditioning in our models perform better than
random chance.

6 Conclusion/Future Work

cWGAN-GP with Residual blocks proved to have the best performance in terms of our metrics as
well as producing sharper, more well defined images. We believe this was because of the improved
stability combined with the skip connections and more complex networks.

Incorporating the condition had the most room for improvement so we would like to explore better
ways of using the category labels. Possible approaches could include spectral normalization (11),
projection discriminator (12) and stack GANs with conditioning augmentation (13).

7 Contributions

Eric: Data input pipelines and augmentation. Preprocessed dataset into the right format, etc. Set up
Inception score metrics.

Sudip: Model and loss function selection and implementation. Setting up tensorflow model graph.
Set up classifier for evaluation.

References

[1] M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets,” arXiv e-prints, Nov.
2014.

[2] O. Bar El, O. Licht, and N. Yosephian, “GILT: Generating Images from Long Text,” arXiv
e-prints, p. arXiv:1901.02404, Jan 2019.

[3] Y. Ito, W. Shimoda, and K. Yanai, “Food image generation using a large amount of food images
with conditional gan: Ramengan and recipegan,” in Proceedings of the Joint Workshop on
Multimedia for Cooking and Eating Activities and Multimedia Assisted Dietary Management,
ser. CEA/MADiMa ’18. New York, NY, USA: ACM, 2018, pp. 71-74. [Online]. Available:
http://doi.acm.org.stanford.idm.oclc.org/10.1145/3230519.3230598

[4] L. Bossard, M. Guillaumin, and L. Van Gool, “Food-101 — mining discriminative components
with random forests,” in European Conference on Computer Vision, 2014.

[5] L Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio, “Generative adversarial nets,” in Advances in neural information processing systems,
2014, pp. 2672-2680.

[6] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” arXiv e-prints, p.
arXiv:1701.07875, Jan 2017.

[7] 1. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, “Improved Training of
Wasserstein GANS,” arXiv e-prints, p. arXiv:1704.00028, Mar 2017.

[8] A. Odena, C. Olah, and J. Shlens, “Conditional Image Synthesis With Auxiliary Classifier
GANS,” arXiv e-prints, p. arXiv:1610.09585, Oct 2016.

[9] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Improved
Techniques for Training GANS,” arXiv e-prints, p. arXiv:1606.03498, Jun 2016.

[10] S. Barratt and R. Sharma, “A Note on the Inception Score,” arXiv e-prints, p. arXiv:1801.01973,
Jan 2018.

[11] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normalization for generative
adversarial networks,” arXiv preprint arXiv:1802.05957, 2018.

[12] T. Miyato and M. Koyama, “cgans with projection discriminator,” arXiv preprint
arXiv:1802.05637, 2018.

[13] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. N. Metaxas, “Stackgan: Text to
photo-realistic image synthesis with stacked generative adversarial networks,” in Proceedings
of the IEEE International Conference on Computer Vision, 2017, pp. 5907-5915.

