CS230

Predicting Effective Customer Touchpoint

Ahmed Bux Abro Nagarjuna Rao V S
Stanford University Chakka

aabro@stanford.edu Stanford University

nagarjuna@stanford.edu

Abstract

Deep learning has conventionally been used for unstructured data. We are using
deep learning prediction model to target Google marketing problem, to predict
what is the most effective touchpoint (mobile vs desktop vs tablet) for their
customers that shop on Google online merchandise store (GStore). The model
predicts the touchpoint based on the structured dataset of 1.7 Million customer
online visits. Our project leverages the two different encoding techniques for
structure data One-hot encoding for inputs and Label Encoding for output
(predicting labels) and predicts the 3 output classes with 96.7% accuracy and 9.5%
loss.

1 Introduction

Deep Learning has touched many aspects of our life and used to solve problems from finance to
healthcare. Marketing is looking for ways to adopt Artificial Intelligence to solve their pressing
challenges such as customer retention, customer loyalty and improving overall customer
relationship. With the evolving technology landscape, customers keep changing their preferred
channel to communicate or deal with the firm. Different generations of customers prefer different
touchpoints based on their personal interests. While Gen-Z wants to use social platforms such as
Instagram and Snapchat to not only socialize but also shop and, in some cases, perform financial
transactions, on the other side Millennials (Gen-Y) prefer to use traditional web email touchpoints
for their interaction. Firms today invest their marketing resources (budget, etc.) across multiple
touchpoints with a fear of missing out (FOMO) the customer opportunity to their competitors as they
are unable to predict the most effective touchpoint to engage their customers. We have applied Deep
Learning (DL) in our project to address the problem by using deep neural network model to predict
the most effective touchpoint for firms to engage with their customer based on the history of past
engagements.

While DL has been proven to effective in handling the large volumes of unstructured data (vision,
voice, text) and able to predict meaningful patterns, firms use machine learning to forecast revenue
predictions with higher accuracy [1]. We believe and test in our project that how Deep Neural
Network (DNN) will equally outperform other ML methods and will offer greater performance in
processing the structured data. As most firms record their customer information and history in a
structured format, we developed a DNN model that analyze the structured data and uses the
combination of one-hot and label encoding technique to use categorical data for Google online
merchandise store (GStore) customer online visit records and predict the preferred touchpoint for
Google customers.

Initially, we planned to combine structured data (firm data) and customer image data (computer
vision) but due to the time limitation, we were only able to develop a deep learning program to

predict using structured data only. However, in future we plan to combine both computer vision and
structured data related into a single model to provide a comprehensive prediction of customer
preferred touchpoint across multiple touchpoint types (social media, in-store and others).

2 Related work

Machine learning techniques like Gradient Boosted Tree models are commonly used for predicting
tabular or structured data. Recently research started focusing on the use of Deep Neural Network to
improve network performance for the structured data. A neural network based, self-adaptive
information pattern recognition methodology to solve marketing problem of customer churn was
proposed by [2], by applying feedforward NN that can automatically learn features and that is based
on error back propagation algorithm, they were able to gain 92% accuracy on structured marketing
data. A more recent paper by [3] proposed the use of entity embedding techniques for marketing
problem of predicting customer lifetime value (CLTV), the technique is adopted from Natural
Language Processing (NLP), it helps improve the prediction performance significantly. Embedding
technique has an advantage over one-hot in size (more compact) and dense representation to offer
superior performance as it does in NLP. DL research continues to improve the technique to use feed
forward networks like Recurrent Neural Network (RNN) with embedding to accurately predict large
time-series dataset [4].

3 Dataset and Data Preprocessing

We use Google’s structured e-commerce dataset available for Kaggle’s Google competition, it
includes 1.7 Million past customer online visits that shop on Google online merchandise store
(GStore). Data includes customer transactions information, purchase detail along with the touchpoint
and channel used for the transaction. The dataset is split between the training data and test data. Raw
data with customer transactions were exported from Google’s e-commerce website in .csv format,
with many columns aggregated as JSON blobs that required efforts to preprocess the data. Further
detail about the dataset provided in the following section.

3.1 Dataset Overview
e train_v2.csv - the updated training set - contains user transactions from August 1st 2016 to
April 30th 2018.
o Rows: 903653
o Features: 55
e test_v2.csv - the updated test set - contains user transactions from May 1st 2018 to October
15th 2018.
o Rows: 804684
o Features: 53
e Note that the training data was further split into training and validation data.

Features

Train and dataset matched the columns except that the test dataset did not include the touchpoint
categories and used for later predict of preferred touchpoints for the test dataset.

fullVisitorld- A unique identifier for each user of the Google Merchandise Store.

channelGrouping - The channel via which the user came to the Store.

date - The date on which the user visited the Store.

device - The specifications for the device used to access the Store.

geoNetwork - This section contains information about the geography of the user.

socialEngagementType - Engagement type, either "Socially Engaged" or "Not Socially

Engaged".

totals - This section contains aggregate values across the session.

trafficSource - This section contains information about the Traffic Source from which the

session originated.

e visitld - An identifier for this session. This is part of the value usually stored as the _utmb
cookie. This is only unique to the user. For a completely unique ID, you should use a
combination of full Visitorld and visitId.

o visitNumber - The session number for this user. If this is the first session, then this is set to

1

visitStartTime - The timestamp (expressed as POSIX time).

hits - This row and nested fields are populated for any and all types of hits. Provides a record
of all page visits.

e customDimensions - This section contains any user-level or session-level custom
dimensions that are set for a session. This is a repeated field and has an entry for each
dimension that is set.

e rotals - This set of columns mostly includes high-level aggregate data.

Label

We use device.deviceCategory as the target label that contains mobile/desktop/tablet as the values
that are later encoded to use in the model.

3.2 Data Preprocessing

Both training and test datasets included 4 JSON format aggregated columns titled as device,
geoNetwork, totals, trafficSouce. Following phases of data preprocessing were performed on the
datasets:
e First, flatten the data and extract all sub-columns from the JSONs
e Second, adding new time features. Also adding new aggregated features (average and sum)
grouped by unique fullVisitorld.
e Third, change the data types as appropriate for the model, such as converting numerical to
floating and device.isMobile from Yes/No to 0/1
Fourth, Columns were checked for more than 50% of null values and were dropped
Fifth, columns were checked for the null value and filled for its missing and null values
e Finally, getting rid of the columns that are not needed for the model such as
trafficSource.adwordsClickInfo.*, trafficSource.*, socialEngagementType, sessionld,
device.browser*, visitld, visitStartTime

3.3 Data Preprocessing: Normalization
Input feature set required the normalization due to the varied types (continuous and categorical)

and varied ranges of input across different features. We used MinMax Scaling with below formula:
z; — min(x)

m Mmax(z) — min(z)
MinMax Scaling helped us keep the features in the same range between 0 and 1. Normalizing

feature distribution helped the model to converge faster, reduce the processing time and increase
performance.

3.4 Encoding (One-hot and Label Encoding)

Based on our research, we learned that the significance of different encoding types based on the
requirements of the model and individual data type for features and labels. One-hot coding was
applied to categorical features: channelGrouping, device.isMobile, month, weekday. Each feature
coding resulted in a number of dummy variables. It dramatically introduced the number of features
of one-hot coded columns. We also applied label encoding for selected categorical and labeled data
and perform the fit and transform functions on the encoding.

4 Methods

4.1 Framework

We developed our DNN model using the Keras neural network library written in python. It helped
us reduces the complexity at TensorFlow level through abstraction and help keep the focus on the
actual problem-solving.

4.2 Model

Our model is a multi-layer perceptron (MLP) using fully connected neural networks with input layer,
four hidden layers and multi-class SoftMax classification output layer. Model uses “ReLU”
activation for input and hidden layers while the output layer uses “SoftMax”. Below is the model
summary:

Layer (type) Output Shape Param # Activation
layer_1 (Dense) (None, 200) 8800 ReLU
layer_2 (Dense) (None, 100) 20100 ReLU
layer_3 (Dense) (None, 100) 10100 ReLU
layer_4 (Dense) (None, 100) 10100 ReLU
output_layer (Dense) (None, 3) 303 SoftMax

Total params: 49,403
Trainable params: 49,403
Non-trainable params: 0

Batch normalization technique is used as part of the model architecture. It helped speed up the

training with fewer steps and improve accuracy. Experimentation using different mini-batches is
further discussed in the following section. Following the graphical model architecture design

IsVariablelnitialized[0-44]

- p

&

training init

Adam init metrics group_deps loss group_deps | i

output_Jd outpuf_la..

output_layer it

:

layer_1/1

Figure: Graphical Model Architecture Design
4.3 Cost Function

Since we use multi-class SoftMax classification for our output layer and our labels are integer
encoded, we chose to use “sparse_categorical_crossentropy” loss function. It uses the same
equation as categorical cross entropy, with the only benefit that it allowed us to keep output as
integers:

M
- z Yo ng(pn.c)
c=1

5 Experiments and Results

5.1 Experiments and Hyperparameter tuning

We tried and tested different model architectures before reaching to our final model architecture that
fits our requirements, features, and output. After experimenting with different mini-batch sizes, we
notice that the mini-batch size of 128 was the best performing architecture for our model as there
was a significant difference in performance and accuracy with different batch sizes of 32/64/128.

We also tried using large epoch sizes but noticed that there was no much difference in performance
beyond 50 epochs. Also experimenting with learning rates of 0.0001/0.0002 and 0.0003, we found
that the learning rate for 0.0003 was the best parameter for learning rate. Below is the summary of
hyperparameters for the final model

Table: Hyperparameters for final model

5.2 Results

The final model results offered a 96% validation accuracy, 13% validation loss. However, we noticed
that the results for validation accuracy indicate that the model was able to gain greater accuracy
during initial epochs and running the model with longer epochs didn’t help much in improving the
model learning. We plan in the future to revisit and test new model architecture, hyperparameters
and also add new image features in the model to see if the model learning improves any further with
new changes.

Below is the snapshot for last epoch and related loss and accuracy for training and validation:

“765707/765707 [] - 32s 42us/step - loss: 0.0940 -
sparse_categorical_accuracy: 0.9677 - val_loss: 0.1285 - val_sparse_categorical_accuracy: 0.9574”

We ran tensorboard for graphical representation of the model training and output. Below are the
graphs from tensorboard for a model run:

loss

0.0975
0.097

0.0965
0.0955
0.095

0.0945

0.0935

Figure: Loss with 50 Epochs

sparse_categorical_accuracy

0.968
0968
0.968
0.968
0.968

0.967

0 5 10 20 25 30 40 a5 50

Figure: Sparse Training Accuracy with 50 Epochs

0132
0.131

0.131

Figure: Validation Loss with 50 Epochs

val_sparse_categorical_accuracy

10 15 20 25 30

Figure: Validation Accuracy with 50 Epoéhs

a5 50

6 Conclusion and Future Work

This project helped us validate the outstanding performance of Deep Neural Networks for the
structured dataset, its ability to predict complex marketing data patterns with up to 96% accuracy,
and its impact on solving pressing marketing problems. We acknowledge the possible gaps in the
current model. However we believe our project is introducing just a baseline model and probably an
easy task for deep learning compares to its capability to process complex data. However, as future
task, we can challenge and enhance this model by adding computer vision (product catalog images,
customer images, live video) and Text (social media, reviews). We planned to introduce a future
enhancement to model, adding transfer learning using Inception v4 and RNN. After these
enhancements model would offer better use of DNN techniques introduced in this project and
provide more meaningful predictions for our data. Finally, we think structured data is as critical as
non-structured data to solve complex business problems as firms mostly record their customer data
in a structured format. By adopting deep learning techniques, we can address many current
challenges with outstanding performance, and higher accuracy compare to many other ML
techniques.

7

Contributions

All team members involved in this project have a contribution. While Nagarjuna focused on dataset
management and data preprocessing, Ahmed focused on model architecture, hyperparameter selection

and tuning.

8 References

1. Gajewar, A. and G. Bansal, Revenue forecasting for enterprise products. arXiv preprint arXiv:1701.06624,
2016.

2. Sharma, A., D. Panigrahi, and P. Kumar, A neural network based approach for predicting customer churn
in cellular network services. arXiv preprint arXiv:1309.3945, 2013.

3. Chamberlain, B.P., et al. Customer lifetime value prediction using embeddings. in Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2017. ACM.

4. Grob, G.L., et al. A Recurrent Neural Network Survival Model: Predicting Web User Return Time. in Joint

European Conference on Machine Learning and Knowledge Discovery in Databases. 2018. Springer.

