Deep Affinity Networks for Multiple Object Detection

Darren Mei Duncan MacWilliams Aditya Khandelwal
Dept. of Computer Science Dept. of Computer Science Dept. of Computer Science
Stanford University Stanford University Stanford University
dmei@stanford.edu dmacwill@stanford.edu akhand@stanford.edu
Abstract

This paper solves multiple object detection and tracking using a Deep Affinity
Network (DAN). Multiple object tracking builds off of object detection and assigns
identities that are consistent throughout a video stream. We use the Multiple Object
Tracking (MOT) dataset to evaluate our model. With revisions made to the original
DAN architecture implementation, our model performs better and generalizes
well to the test set. Additionally, it shows more robustness to occlusion-induced
identity switching issues. Following an overview of prior efforts at solving this
problem, we describe and evaluate baseline implementation of Simple Online, and
Realtime Tracking (SORT) model, and use it to compare the results from the DAN
implementation. We achieve an MOTA score of 51.05% and an MOTP score of
0.2175, both of which are slightly better than the original model.

1 Introduction

Commonly, in tasks that require object detection and tracking, detection is undertaken with the help
of deep learning frameworks while tracking is accomplished using geometrical and mathematical
analysis. In this project we are concerned with object tracking using deep learning. We use the
datasets provided by the Multiple Object Tracking datasets available on the MOT Challenge website.
The object tracking component assigns a unique id to each of the detected objects and keeps ids
for unique objects consistent between frames of the video. In this task, the goal is to achieve high
accuracy and find ways to handle multiple overlaps between objects as they cross paths across
frames. Particularly, we are interested in applying deep learning techniques since they provide a
non-linear model that could learn geometrical and mathematical approaches without any specific
domain knowledge.

2 Related work

Most recent approaches for Multiple Object Tracking can be broadly classified into one of two
categories: Detector Based Tracking (DBT) and Detector Free Tracking (DFT) (6). During DBT,
objects are first located in individual frames and their trajectories are subsequently tracked. Given
a sequence, type-specific object detection or motion detection, is applied to each frame to obtain
object hypotheses, then (sequential or batch) tracking is conducted to link detection hypotheses into
trajectories. On the other hand, DFT requires manual initialization of a fixed number of objects in the
first frame, then localizes these objects in subsequent frames. Therefore, DBT algorithms usually track
objects of a certain class, while DFT algorithms can track objects from multiple classes. Sequential
methods (called online tracking algorithms) (10) (11) handle frames where only information up to the
current time is available. Alternatively, offline methods employ both past and future frame knowledge
to track objects. Kalman Filter (7) and Kernel tracking (8) algorithms like a mean shift tracker are
examples of DBT trackers which require object detection in each frame. However, they are not precise
enough to handle very dense frames with multiple objects simultaneously. Recent papers make use of

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

contextual models to avoid losing track of the object (1). Finally, the current state-of-the-art model
on the MOT17 dataset is LSST17 (5), which is a DBT model that uses a switcher-aware classifier for
tracking objects.

3 Dataset and Features

We are using the Multiple Object Tracking Benchmark to train and evaluate our models, specifically
the MOT17 dataset. In each of the videos there is a large amount of identity switching and overall
pedestrian tracking, making these problems difficult for most tracking models. The training set for
MOT17 originally comes with 21 videos of lengths varying from 30 to 60 seconds, and frame rates
ranging from 14-30 frames per second. In order to tune our hyperparmeters and test our videos we
divided the dataset into three parts: 19 videos for training, 2 videos for validation and 2 videos for
testing purposes. Each video is sourced in a crowded area from various cities of the world. For each
such scene, we have raw data, ground truths and detections available. The detection files consist
of bounding box coordinates for each bounding box in each frame, along with an ID that identifies
bounding boxes across frames.

4 Methods

4.1 SORT Baseline

SORT (Simple Online and Realtime Tracking)(3) is a barebones implementation of multiple object
tracking that utilizes only state and data association. This is what we used for our baseline.

The displacements of each object between frames is approximated by a linear constant velocity model.
For each object, the following are recorded for each frame: the horizontal and vertical pixel locations
of the center of the object, and the area and aspect ratio of the object’s bounding box. To assign
detections to targets, intersection-over-union (IOU) distance is calculated between each detection
and all bounding boxes that have been predicted for the current frame. Using only these metrics and
no deep association whatsoever, SORT represents a minimal approach that works effectively as a
baseline.

4.2 Deep Affinity Network

Our main approach to object tracking follows the architecture outlined in the Deep Affinity Network
paper.(1) The Deep Affinity Network (DAN) aims to take a pair of video frames that are some
parameter n frames apart, as well as the centers of the pre-detected objects in those frames. At a
high level, the network then computes scores relating to the possible combinations of the centers of
pre-detected objects in the earlier image to the centers in the later image. In doing so, it is able to
gauge the "affinity" that an object in the later image has with an object in the earlier image and assign
IDs accordingly.

4.2.1 Model Architecture

The first part of DAN consists of an architecture similar to the VGG16 Convolutional Neural Network
model used for image classification.(2) This sub-network’s primary purpose is as a feature extractor
which provides comprehensive representations of the detected objects. Since there are two frames
sent into the network the frames are sent through parallel feature extractor structures, as see in Figure
1. The reason this subnetwork is not identical to VGG16 is due to the input size into the network, as
the frames are of higher resolution than the images that were input into VGG16 from ImageNet(4).
Additionally, the fully-connected and softmax layers of VGG16 have been converted to convolutional
layers, because the resulting feature maps of this sub-network are sent to another sub-network.

The next sub-network is denoted as the Extension network, because it has additional convolutional
layers in order to reduce the input feature map size of 56x56 from VGG16 to an output feature map
size of 3x3. The purpose of the Extension network is to create object feature maps at varying levels
of abstraction. While the network uses 3x3 filter sizes to reduce the dimension, it also uses 1x1
convolutions in between each 3x3 convolution layer. This is because in order to learn over a large
amount of feature maps, the dimensions need to be reduced at points.

Feature extractor Affinity estimator

Figure 1: Architecture of the Deep Affinity Network(DAN)

During the VGG-like and Extension subnetworks, a selector goes along and picks 9 different feature
maps of varying sizes. From this, the selector then concatenates these feature maps together to form
a 520-dimensional vector for a detected object. This creates a feature matrix for the earlier video
frame as well as the later video frame, because both were run through the same structure. These
2-dimensional matrices are then used to form a three-dimensional tensor of size (number of detected
object center points) x (number of detected object center points) x (520 x 2). This occurs by arranging
the two feature matrices in all possible permutations of the object ID correspondences.

This tensor is then run through the Final network consisting of five convolutional layers to form the
affinity matrix M. M is then split into two cases, M; and M,, where M; is M with an appended
column and My is M with an appended row. Finally, M; and M> are run through a softmax function
to receive the matrices A; and A,. These two matrices can then be used to compute the affinities
between an object in the later image and an object in the earlier image. For example, the rows of
A encode probabilistic associations between an object in the earlier frame and all of the objects in
the later frame. Similarly, the columns of A encode the associations between an object in the later
frame and all of the objects in the earlier frame.

4.2.2 Loss Function

The loss function used in the Deep Affinity Network is the average of four different loss functions.
These loss functions represent the forward, backward, consistency, and assemble loss. Forward Loss,
denoted as Ly, calculates the loss based on identity association from the earlier frame to the later

frame. Backward Loss Ly, is similar but from the later frame to the earlier frame. Consistency Loss is
represented as L, and maintains similarity between Forward and Backward loss. Lastly, Assemble
Loss is a form of non-max suppression for forward and backward associations. In these equations
below, L, Lo, and L3 correspond to trimmed versions of the difference between the ground truth
annotation and the predicted matrices A; and As. In particular, L; corresponds to trimming the last
row, Lo trims the last column, and L3 trims both the last row and last column.

> (L1 © (=log Ay))
LALy, A1) = Z(Ll)g

Ly(La, Az) = =02 %((;;;g A2))

Lc(Ax, A2) = [|A1 — A2

>_(Ls ® (—log(maz(A1, A2))))
> (La)
Lf—|— Ly +ac+ Le
=

La(L37A17A2) =

L

5 Experiments/Results/Discussion

5.1 Evaluation Metrics

We used the following metrics to evaluate our models:

MOTA (Multiple Object Trakcing Accuracy) is a metric that is evaulated from three error sources:
false positives, missed targets, and identity switches.

S (my + fp, + mmey)
Zz gt

where my, f,, and mme; are the number of missed targets, false positives and identity switches
respectively for time £.

MOTA=1-

MOTP is the precision metric that is evaluated from the misalignment between the annotated and
predicted bounding boxes.
Zi,t di,t

et
Where c; is the number of matches found for time t, and for each of these matches d; ; is the distance
between the object and its corresponding predicted box.

MOTP =

The IDF1 score is the ratio of correctly identified detections over the average number of ground truth
and computed detections.

The MT metric represents mostly tracked targets. MT is the number of ground truth trajectories that
are covered by a track prediction for at least 80% of their respective life spans.

5.2 Experiments

First, we ran our sort baseline on the MOT17 dataset to get preliminary results and see how our
baseline performed on the test set. Following this, we ran our first unmodified DAN network, which
took much longer to run given the introduction of deep metrics and many parameters. The parameters
included the pixels of the input RGB training frames from the videos as well as the precomputed
bounding box centers.

To modify the existing DAN architecture, we decided to add dropout to the convolutional layers
themselves. Adding dropout with low drop probability in the convolutional layers can be beneficial to
learning, so we added dropout with drop probability 0.1 to each of these layers.(13) We also noticed
that the original architecture placed batch normalization layers before the ReLU activation layer,
which we thought was curious. There is a lot of debate surrounding the order that these layers should
be placed in, but we thought it made more sense to normalize after performing ReLLU activation.(12)
This way, the negative values that we throw out anyway with activation are not accounted for in the
normalization. With these changes incorporated, we ran the modified model. We trained the model
with batch size 4 and learning rate 0.01. We also used SGD with weight decay and ran the model for
40 epochs.

5.3 Quantitative Results

As seen in Table 1, the modified Deep Affinity Network architecture performs better than the original
Deep Affinity Network architecture on the training, validation, and test sets by a small margin.
Though both architectures perform slightly worse in MOTA than the SORT Baseline on the training
and validation sets, they perform much better on the test set. MOTP also improves in the training and
test set in the DAN implementations. Additionally, in all datasets the modified DAN architecture
improves in IDF1 over the original Deep Affinity Network and SORT, showing that it correctly
identifies more detections than the two other implementations. Finally, the number of mostly tracked
targets is similar between the two Deep Affinity Network implementations, and both are higher in the
validation and test set than the SORT Baseline.

One issue with our results is that the test set performance is significantly higher than the train and val
set performance for the DAN architectures. Though we assumed the videos in the MOT17 training
dataset were similar, since we used 2 videos for the val set and 2 videos for the test set it is possible

Dataset MOTA MOTP IDF1 MT

SORT Baseline

Train Set 41.75% 0.173 43.51% 13.765
Val Set 45.70% 0.189 8.25% 135
Test Set 38.65% 0.133 5.65% 10
Original DAN

Train Set 39.82% 0212 45.78% 13.706
Val Set 39.10% 0.1605 46.45% 18
Test Set 50.85% 0217 50.30% 15
Modified DAN

Train Set 39.88% 0213 46.24% 13.765
Val Set 39.30% 0.1605 47.00% 17.5
Test Set 51.05% 02175 51.20% 15

Table 1: Implementation Results on MOT17 Data

that one or both of the videos in the test set contains an easier tracking problem. However, since the
SORT Baseline did the worst on the test set, it is possible that the test set videos are ones that the
DAN architecture performs better on.

5.4 Qualitative Results

Figure 2: Output examples from the Modified Deep Affinity Network

As seen in Figure 2, the majority of detections in the earlier frame (top image in both examples)
are correctly identified in later frames (bottom image in both examples). However, there are certain
misidentifications which can be seen in the red circles that do not have a connection in the other frame.
As seen in the right side of Figure 2, the person exiting the frame is not correctly identified in the
later image, showing that the Deep Affinity Network does not perform as well with people entering
and exiting the image. Additionally, this then causes the person next to them to be misidentified as
both people in the later frame.

6 Conclusion/Future Work

In this paper, we introduced improvements to the Deep Affinity Network architecture for multiple
object detection and tracking. From our results, it is evident that our revised version performs better
on key metrics even when we reduce the training time of the model compared to the original model.
Furthermore, the proposed DAN architecture was more robust at identifying and dealing with similar
object tracking under greater occlusions. Given more time and computational resources, we want to
try replacing the intro VGG-like subnetwork with ResNet. Additionally, we would like to train our

model for more epochs on different dataset splits to better understand our results. Finally, we could
utilize pyramid networks to extract the feature maps at varying scales.

7 Contributions

Duncan MacWilliams: Worked on getting the SORT baseline functional with our dataset and getting
familiar with the code. Worked with Darren to analyze and make changes to the network architecture
in the DAN model. Proposed adding dropout to each convolutional layer with small drop probability.
Debugged DAN code to work with our new modified architecture. Created the poster with Darren.
Wrote the following paper sections: SORT Baseline, Experiments, and Evaluation Metrics.

Darren Mei: Worked on configuring the Deep Affinity Network for training and evaluation and
debugged how to run and save model checkpoints with the MOT17 dataset. Worked with Duncan on
changing the network architecture, and proposed switching the Batchnorm and ReL.U layers after
literature review. Proposed the splits of the data for the train, val, and test set. Created the poster with
Duncan. Wrote the following paper sections: Deep Affinity Network method overview, Quantitative
Results, Qualitative Results.

Aditya Khandelwal: Worked on getting the SORT baseline functional with our dataset and getting
familiar with the Github repository with Duncan. Evaluated and compiled results of the SORT
baseline on the train, val and test sets. Trained the original DAN architecture implementation for
up to 70 epochs, and the modified version of the DAN network as described by Darren and Duncan
above for up to 40 epochs. Evaluated and compiled the results on the train, val and test sets for each
model. Wrote the following paper sections: Abstract, Introduction, Related Work, Results Table,
Conclusion/Future Work.

8 Acknowledgements

We would like to thank the following projects that helped us get going on our project: Alex Bewley
for SORT: https://github.com/abewley/sort

And Sun et al. for their DAN implementation.

References

[1] Sun, S., Akhtar, N., Song, H., Mian, A., Shah, M. (2018). Deep Affinity Network for Multiple
Object Tracking. arXiv preprint arXiv:1810.11780.

[2] Simonyan, K., Zisserman, A. (2014). Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.

[3] Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B. (2016, September). Simple online and
realtime tracking. In 2016 IEEE International Conference on Image Processing (ICIP) (pp.
3464-3468). IEEE.

[4] Deng,J., Dong, W., Socher, R., Li, L. J., Li, K., Fei-Fei, L. (2009, June). Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition (pp. 248-255). IEEE.

[5] Weitao F., Zhihao H., Wei W., Junjie Y., Wanli O. (2019). Multi-Object Tracking with Multiple
Cues and Switcher-Aware Classification arXiv:1901.06129

[6] Wenhan L., Junliang X., Anton M., Xiaoqin Z., Wei L., Xiaowei Z., Tae-Kyun K. (2017).
Multiple Object Tracking: A Literature Review arXiv:1409.7618

[7] Isard, M., Blake, A. (1998). Condensation - Conditional Density Propagation for Visual Tracking.
International Journal of Computer Vision International Journal of Computer Vision, 29(1):5-28

[8] Comaniciu, D., Ramesh, V., Meer, P (2003). Kernel-based Object Tracking. IEEE Trans. on
Pattern Analysis and Machine Intelligence IEEE TRANSACTIONS ON PATTERN ANALYSIS
AND MACHINE INTELLIGENCE, VOL. 25, NO. 5: 564-577

[9] Comaniciu, D., Ramesh, V., Meer, P (2003). Single and multiple object tracking using log-
euclidean riemannian subspace and block-division appearance model IEEE Trans. Pattern Anal.
Mach. Intel., vol. 25, no. 5: 564-577

[10] W. Hu, X. Li, W. Luo, X. Zhang, S. Maybank, and Z. Zhang (2012). Kernel-based Object
Tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence IEEE Trans. Pattern Anal.
Mach. Intel., vol. 34, no. 12: 2420-2440

[11] L. Zhang and L. van der Maaten (2013). Structure preserving object tracking in Proc. IEEE
Comput. Soc. Conf. Comput. Vis. Pattern Recognit.: 1838—1845.

[12] Han, D., Kim, J., Kim, J. (2017). Deep pyramidal residual networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (pp. 5927-5935).

[13] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1., Salakhutdinov, R. (2014). Dropout:
a simple way to prevent neural networks from overfitting. The Journal of Machine Learning
Research, 15(1), 1929-1958.

