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1 Introduction

Recent advancement in battery technology is bringing significant growth in the electrification of both
ground and aerial vehicle platforms. However, battery storage in electric vehicles is an extremely
complex system that has a very narrow operating range and may lead to premature unexpected failure
[1-3]. In this regard, the role of the battery management system (BMS) is vital to 1) monitor the state
of charge (SoC) and state of health (SoH), 2) protect individual battery cell, 3) safeguard the device’s
human operator and 4) prolong the life of batteries. However, state-of-the-art BMS technology
relies only on the terminal voltage measurement to estimate both SoC and SoH, which alone is
insufficient for accurately determining the two states. Moreover, the current BMS critically lacks a
breakthrough technique for an independent direct and accurate probing of the physical properties
of the batteries [4] for SoC and SoH determination. Recently, acousto-ultrasonic guided waves
propagation characteristics have been demonstrated as a potentially strong, on-board alternative
method to probe the mechanical behavior of lithium-ion batteries. Fig.1 shows the overview of
using piezoelectric sensors, which could generate the ultrasonic guided waves, on real-time battery
monitoring. But this method has yet to be tuned and integrated into the modular structure of
BMS to function autonomously. Therefore, the main goal of this research is to develop a novel
BMS framework where rich data available from ultrasonic guided wave sensors, data mining and
deep learning will serve as powerful tools for modeling and predicting the battery condition under
complexity and uncertainty. Here, the utilization of ultrasonic sensors and deep learning techniques
will significantly improve the estimation of SoC and SoH in the BMS.

2 Related work

In battery monitoring domain, data-driven approaches, like machine learning, deep learning tech-
niques are based on processing a great amount of multifaceted test data. These approaches have
attracted increasing attention because of their flexibility and model-free characteristics compared
with model-based techniques in this field. Some readily measurable data (e.g., terminal voltage,
load current, historical state of charge (SoC), and operating temperature) or extracted characteristic
features are the inputs for “black-box” models for batteries. For instance, such “black box” models
have included artificial neural networks, relevance vector machines, and sparse Bayesian predictive
modeling. You et al. [5] proposed a datadriven approach based on neural networks to trace SoH using
dynamic condition data while leveraging their historical distributions. For degradation modeling,
Zhou et al. [6] extracted mean voltage falloff of lithium-ion batteries, and a regression equation
was established to estimate capacity. Hu et al. [7] used the sparse Bayesian predictive modeling
methodology to capture the underlying correspondence between capacity loss and sample entropy of
short voltage sequence.
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3 Dataset and Features

The sensor data are already collected and stored in mat format. Sensors data are collected at different
state of charge of batteries and there are nine paths of sensor data at varying frequency. Figure 1
shows the example output of the data collected. The sampling frequency of the sensor is 48 x 10~6
Hz, with sampling points of 4000. At different states of the battery, the output signals of the sensors
are different. Therefore, each samples have a dimension of 4000 x 9. And number of the samples
are 1500. Fourier Transform is applied to these data and new data set of dimension of 4000 x 9 is
generated.
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Figure 1: Example of output of sensors signals at different battery state of charge/voltages at 300kHz.

To reduce the computational effort, I down-sampled the output sensor signals into 400 sampling
points and treat these data as the input of the network. So the input of the network is 400 x 9. For the
output of the network, it’s going to be the state of charge of the batteries. State of charge of batteries
are defined as the ratio of available capacity and the maximum possible charge stored in a battery.
For example, at fully charged voltage of lithium-ion battery is 4.2V which means the state of charge
of battery is 1, while fully discharged voltage of lithium-ion battery is 3.0 V with state of charge of 0.
So the range of the state of charge is from O to 1. After down-sampling the data, normalization was
done on all data sets. Training and validation examples are divided by the ratio of 7 : 3.

4 Methods

4.1 Fully connected layer

In this case, the hidden layer we choose is fully connected layer with RELU activation layer. The
loss function of fully connected layer is mea squared error (MES):
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where N is the number of samples. y presents the variable being predicted, which is the state of
charge in this case. (Ytrue — y][,md)2 is known as the squared error. The loss function in this case is
simply taking the average over all squared errors. Therefore, the better predictions means lower loss.
And I used mini-batch gradient descent to minimize the loss.

4.2 Convolutional Network

Convolutional Network is used in this application. There are two Layer of Convolution 2D layer
followed by Batch normalization layer and Relu layer. In the end, one fully connected layer is added.



5 Experiments/Results/Discussion

Figure 2 shows the RMS after enough iteration at varying learning rate while keep the fully connected
layer and other parameters fixed. The RMS is defined as
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As decreasing the learning rate, the RMS of the test sets are decreasing. Figure 3 shows the prediction
and real values of test sets at learning rate equals to 0.01.The collected sensors data shows the
nonlinear properties with respect to the state of charge of batteries. After applying the deep learning
methods on the sensor data, the figure shows that deep learning methods successfully predict the state
of charge. The RMS of using fully connected layer is 1.88%. And the RMS of using convolution
neural network is around 3%. That may conclude that in this application and type of input data, it’s
not suitable to treat the input as “image” while using convolutional neural network. After wavelet
transform or other signal processing, convolutional neural network may be useful in this application.

After applying the Fourier Transform, with the same settings as raw data. The RMS of Fourier
Transform is 4.2%, while the raw data is 2.3%. This might cause by after applying the Fourier
Transform, some important features in the time domain data is lost.
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Figure 2: Prediction and Real Values of Test Sets

6 Future Work

In the project, raw data and Fourier transformed data are used as the inputs of the network. In the
future, Wavelet Transform will the used to pre-process data. More data need to be collected to do the
estimation of not only the battery states but also battery health.
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Figure 3: Prediction and Real Values of Test Sets
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