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Abstract

U-Net has become a popular network for many segmentation tasks, particularly
medical segmentation. However, the overall network has remained relatively unchanged
since its introduction in 2015. Here we examine the basic U-Net architecture under
different loss functions and components on a medical segmentation task, similar to how
the original U-Net was evaluated. We find that both a modified U-Net with a NAS cell
and Attention U-Net lead to better performance.

1 Introduction

U-Net is a popular network choice for image segmentation tasks. Its simple structure makes
it easy to implement and use. However, the original structure of U-Net has remained
relatively unchanged since it was introduced. The goal of this paper is to examine the U-
Net architecture under different loss functions and components. We experiment with these
changes using a medical segmentation task akin to how U-Net is typically evaluated.

2 Related Work

There has been much work done using segmentation on medical images. One of the more
widely used model architectures is U-Net by Ronnenberger et al. [5] who uses an architecture
that consists of a series of downsampling maxpools and upsampling transpose convolutions
with skip connections in between to create a U-like shape. Also drawing from this work
is the Attention U-Net by Oktay et al. [4] who creates an network similar to U-Net but
uses an attention gating mechanism in the skip connections. Segmentation is also used
outside of medical images on datasets such as PASCAL VOC 2012 and Cityscapes. The
DeepLab architectures have been very popular with the most recent paper from Chen et
al. [2] introducing DeepLabv3+ which utilizes and encoder-decoder like structure with an
atrous spatial pyramid pooling layer.

3 Data

The dataset is from the Medical Segmentation Decathlon challenge [6]. We use the data
provided in the Task01l BrainTumour dataset which consists of 750 multi-parametric
medical resonance imaging scans (MRI) scans. The multi-parametric MRI sequences include



Figure 1: The left image shows a T2-FLAIR modality of the MRI scan while the right image
shows the segmentation label in red.

4 different modalities, so the input images have a channel dimension of 4. You can see an
example of one of the modalities in Figure 1. There are also 3 classes of segmentation,
edema (swelling), non-enhancing tumour and enhancing tumour. For the purposes of our
experiments, we collapse all classes into a single class. We use 484 volumes for training and
leave 266 for testing. Because each volume contains many 2D images, we end up with 58
thousand images for training and 11 thousand images for our validation set.
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Figure 2: A generalized U-Net architecture split into 4 main modules.

We can parameterize the U-Net architecture with a few key modules: ConvBlock, Skip-
Conn, UpOp and DownOp.

hP.; = DownOp(ConvBlock(h?; F}))
h{.1 = UpOp(ConvBlock(SkipConn(h{, 3, 1)) Fa—1)—i))

Where hP is the i'" hidden layer going down (comint out of a DownOp) and hY is the
i'" hidden layer going up (coming out of an UpOp). F; is the number of feature maps for the



Loss IoU
Dice Loss 0.9134
Dice Loss Sq. | 0.9138
BCE 0.9090
Focal Tversky | 0.9009

Figure 3: Loss functions with their associated IoU scores.

it" ConvBlock. You can see these operations and how they are combined in Figure 2. Note
that the original U-Net paper shows a similar figure but they do not abstract the different
components and instead list out the specific operations used for each operation.

5 Experiments

5.1 Setup

For preprocessing we first center crop all the images to 144x144. We then standardize by
the image mean and standard deviation. During training we use ZCA whitening, shearing
between 0 and 2 degrees, and random horizontal and vertical flipping. We build each model
such that it has 8.5 million parameters to make the comparisons more fair. When training
we pick the best model based off of its validation IoU score. All models are trained with the
Adam optimizer [3] with a learning rate of 0.0001, a batch size of 40 (the largest batch size
that could be fit into memory) and 20 epochs or until convergence. All models were run on
AWS p2.xlarge instances which are single NVIDIA K80’s with 12 GiB of GPU memory.

5.2 Loss Functions

We examine several different loss functions. The first two loss functions we look at are the
Dice loss, or 1 minus the Sorensen-Dice coefficient and the Dice loss squared which has the
denominator terms squared. The Dice loss squared was chosen because it had previously
shown promising results. The third loss function is the binary cross entropy loss, a popular
choice for image segmentation tasks and finally we look at the focal Tversky loss which
was shown by Abraham et. al. [1] to perform well on medical image segmentation tasks,
however we do not see this in our experiments.

The Dice loss and Dice loss squared loss functions had similar validation performance
in terms of IoU as shown in Figure 3. However, the Dice loss produced more stable results
than the Dice loss squared. For all of our U-Net architecture experiments we use the Dice
loss.

5.3 U-Net Architectures

We explore several variations of the U-Net architecture. Each one consists of changing
either the ConvBlock, SkipConn, UpOp or DownOp module as show in Figure 4. Our main
U-Net architecture differs from the original U-Net architecture in several minor ways. For
up sampling we use a transpose convolution. We also add a batch normalization layer.

We examine two different architectures that utilize components from NASNet [8]. The
first takes the normal cell from NASNet-A and uses it as the U-Net ConvBlock. The second,



Module ConvBlock SkipConn DownOp
U-Net 2 x (Conv k3 x 3, ReL.U Concatenate, Crop | Max Pool k2 x 2
Attn U-Net 2 x (Conv k3 x 3,ReLU AttnCell Max Pool k2 x 2
NAS U-Net NASNet-A Normal Cell Concatenate, Crop | Max Pool k2 x 2
NAS Red. U-Net | NASNet-A Reduction Cell | Concatenate, Crop Conv skip2 x 2
Efficient U-Net MBConvBlock Concatenate, Crop | Max Pool k2 x 2

Figure 4: The module implementation details of different architectures. Note UpOp is left
out because they are all 2 x 2 transpose convolutions.

Architecture IoU
U-Net 0.9134
NAS U-Net 0.9143
NAS Reduction U-Net | 0.9073
Attn U-Net 0.9140
Efficient U-Net 0.6575

Figure 5: U-Net architectures with their associated IoU scores.

uses normal cells for the ConvBlock on the upsampling part of U-Net but uses the reduction
cells for the ConvBlock on the downsampling part as well as the DownOp. Additionally
we examine Attention U-Net from Oktay et. al. [4] which utilizes an attention SkipConn
module and Efficient U-Net from Tan et. al. [7] which uses an MBConvBlock as it’s
ConvBlock module.

The NAS U-Net and Attention U-Net had the best IoU performance, both reaching
approximately 0.914. Surprisingly, using the NAS reduction cells in the NAS Reduction U-
Net actually hurt performance, and it’s IoU was below the normal U-Net. Efficient U-Net
performed significantly worse at 0.658 IoU. In addition to this we also had a difficult time
fitting the model with the correct hyperparameters into memory despite having the same
number of learnable parameters as all the other models. The Efficient U-Net trained 1.3
times slower than the regular U-Net and NAS U-Net trained roughly 1.9 times slower while
Attention U-Net does not encur any slow down during training.

6 Conclusion

We present a way to abstract U-Net into 4 separate modules: ConvBlock, SkipConn, UpOp
and DownOp. We then examine several U-Net architectures by testing different modules and
find that using attention cells for the SkipConn and NASNet normal cells for the ConvBlock
both lead to better performance for medical segmentation. We hope this abstraction can be
used to quickly explore new forms of U-Net with improved performance.
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8 Appendix

Prediction Label
Figure 6: An example of a false positive example prediction, hence no label.
From Figure 6 you can see an example of a false positive. The 1st and 4th modalities
appear to have slightly lighter areas in the upper right portions of the scan which may have

lead to the model predicting a tumour there. However, the lower
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Label

Figure 7: A saliency map for a particular example.

In Figure 7 you can see the saliency map for a particular example. The saliency map
was taken by propogating the gradient back to each input modality. A few interesting
observations, the gradients are more diffuse on the 2nd and 3rd modalities which contain
less features of the tumour. On the 1st and 3rd, the gradients outline the tumour but don’t

highlight the area of the tumour itself. The gradient intensity is dotted along the edges of
the tumour and not smooth.
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