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Abstract

The power of RNNs in the field of deep learning in recent years has led to great
strides in NLP with breakthroughs in machine translation, question-answering, and
many other fields. In this paper, we explore the use of bidirectional LSTMs to
predict virality of submissions on Reddit, a widely used discussion forum on the
Internet. We discovered that due to imbalances in the dataset and the presence
of multiple, extreme outliers (i.e. viral posts), a classification approach fared
much better than any regression-based model. We ultimately obtained a final dev
accuracy of 31.0% and a test accuracy of 30.5%.

1 Introduction

As social media posts continue to vie for audience attention, it has become of increasing interest to
content creators how to create posts that perform well and to social science researchers why certain
posts perform well. One of the most popular sites today is Reddit, self-dubbed the "front page of the
Internet" and home of over millions of users. Popular posts will become up-voted within a matter of
hours and then fade into the background as new content becomes available. Previous work on Reddit
has analyzed the dynamics of the Reddit community as well as the performance of text and image
posts on the platform. Given the variety of communities on Reddit and Reddit’s large user base, it
is a treasure trove of information, including that related to virality, user sentiment, networks, and
numerous other areas.

With the amount of data and computational power available, models like neural networks have become
widely popular and successful across a number of fields like computer vision and natural language
processing. Tasks like facial recognition, machine translation, and neural style transfer are only some
of the areas revolutionized by deep learning. In this paper, we explore the use of neural networks in
predicting post virality on the internet. We experimented with several different architectures before
settling on a bidirectional LSTM model with cross-entropy loss. We tried different NN layers, loss
functions, and hyperparameter values.

2 Related Work

Previous work in this field has primarily been done to analyze how to target social media content to
specific audiences. Lakkaraju [5] et al. looked at temporal, language, and community features on
post resubmissions to track a post’s performance over time. Though not directly related, there has
also been much network analysis research in this area, which attempt to analyze and predict network
interaction. [1] [2]



3 Approach

Given the temporal nature of language, we decided on a RNN model would be the best approach
for our needs. We ultimately settled on a bidirectional LSTM [3] RNN model followed with a fully
connected layer that processes the final hidden state which is then used for the loss calculation. We
also incorporated an embedding layer to properly convert input words into GloVe vectors, allowing
us to utilize pre-trained word embeddings from the Wikipedia corpus. [6] We experimented with
the output of the fully connected layer and the cost functions to determine what approach would be
most effective as described below. A visual representation of our model can be found at Figure 1.
To train our model, we used minibatch gradient descent with an Adam Optimizer [4] and performed
hyperparameter tuning.

4 Experiments

4.1 Data Pre-processing

The raw data we worked with originally came from https://files.pushshift.io/reddit/
submissions/, a publicly available repository of Reddit data organized into compressed JSON files
timestamped by month. Given the size of Reddit, we limited our dataset to all submissions to the
community r/AskReddit from September 2018. This yielded 235,609 data points. Each data point
consisted of a title and a score (determined by individual users up-voting or down-voting the post).

To convert the title from words into an input suitable for a deep learning model, we also made use
of publicly available pre-trained GloVe word embeddings to map each word to a multidimensional
number encoding [6]. More specifically, we used 50-dimensional word embeddings to encode each
title before passing it to the LSTM layer.

4.2 Data Augmentation

Some initial analysis of the score distribution for our data highlighted some very drastic imbalances
in the dataset. For example, across the 160,000 examples we used as our training set, less than 1000
examples had a score of greater than 1000, and well over half of the training set consisted of labels of
either O or 1. We tackled this issue using several techniques to help mitigate the bias present in the
dataset. We used data augmentation to create copies of the rare examples (score > 1000) so that the
model would be able to view them enough to learn their distinct characteristics. Additionally, we set
the max score to be 1000 as the outliers with scores of tens of thousands or even higher were causing
a huge impact in our model training. Because there are so few data points in that range, we assumed
any score that high was equivalent to virality.

4.3 Loss Functions
4.3.1 Mean Squared Error Loss

As indicated in the name, mean squared error takes the squared loss of the errors and averages them
to compute the loss. This is typically the most popular loss function for regression tasks, and in
almost all cases, provides a good result or a baseline upon which to improve. MSE, however, is also
very vulnerable to the influence of outliers, something that resulted in this being the non-ideal loss
function for our virality task. Formally, it is defined as:
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4.3.2 Huber Loss

After noticing that our regression model was highly affected by outliers, or viral scores, we decided
to use the Huber loss function because it is typically used in robust regression since it is less sensitive
to outliers than squared error loss. The main idea of the Huber loss is to have quadratic loss at small
values and change to linear loss at large values to minimize the effects of large values. The Huber
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Figure 1: Model Visualization

loss function is defined as follows:
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4.3.3 Cross Entropy Loss

Cross-entropy loss measures the performance of classification models by directly penalizing the
probability in the output calculated based on how confident the prediction is. For example, predicting
label 1 with probability 0.7 would incur a much lower cost than predicting label 1 with probability
0.4.

4.4 Regression vs. Classification
4.4.1 Regression

Our regression model determined accuracy by rounding the model’s prediction to the nearest whole
number and comparing it against the actual score. Because our regression model had a smaller and
stricter margin of error than our classification model, it may attribute to its lack in performance. This
was particularly true when our regression model processed Reddit posts with higher ("viral") scores,
which our model likely considered outliers, skewing the model’s performance.

4.4.2 Classification

Our classification model separated Reddit scores into 20 buckets with the following inclusive lower
bounds: [0, 1, 2, 5, 10, 20, 30, 40, 50, 60, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000].
Because most Reddit posts score below 100, we decided to use more fine-grain buckets for smaller
scores, and we split 0, 1, 2 into their separate buckets because the majority of data points fall into
these buckets. Additionally, we could also use this breakdown to define virality as a Reddit post with
score greater than or equal to 1000.

5 Results

Our initial regression model using MSE Loss served as a starting point, and after training using
Adam, we found that the extreme outliers that had not yet been capped at 1000 proved to be too
much of a bias in the model. This meant the MSE model could not predict the small scores of 0 or 1
that constituted most of the dataset. Instead, it would output predictions around 14.8710 with some
differences in decimal places.

Our next approach replaced the MSE Loss with Huber Loss, and we hypothesized that the linear loss
component of Huber Loss may be able to resist the influence of large scores. Even with this approach



though, we ran into the same problem, leading us to conclude that regression models would not be an
effective approach to our problem.

Our best results came from our classification model using Cross Entropy loss and 20 classes to divide
submission scores into buckets, discussed above. Using this approach, we managed to obtain the
following accuracies for each of our datasets. Figure 2 displays the loss curve recorded from our
most successful model. The minibatch gradient descent was extremely noisy, so we determined the
length of training based on the decrease of training/dev loss per each epoch, not for each minibatch.
As you can see, this went down each epoch steadily.

Training | Dev Test
40.5% | 31.0% | 30.5%

5.1 Hyperparameters

After deciding on a classification approach, we performed hyperparameter tuning to help obtain
optimal results, and we achieved a good configuration with the following parameters:

glove_vector_dimensionality = 50
learning_rate = 0.001
hidden_size = 2048
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Figure 2: Training Loss per Epoch and Batch Gradient Descent

5.2 Error Analysis

Looking at incorrectly predicted examples in our dataset and comparing them to some correctly
labeled data, it becomes clear why this is such a difficult task to perform well on. For example, the
following two examples are present in the dataset:

Question Score
Have you ever called 9117 If yes why? 1
Why did you call 9117 1279

To any human individual, these questions would look incredibly similar and they do possess simi-
lar/identical words meaning the GloVe vectors would also be very similar. Despite this though, one
achieved virality and the other did not. Groups of examples like these make it extremely difficult for
our model to learn properly since two very similar inputs map to completely different outputs. This
indicates that there may be other features that serve as better predictors or would complement our
GloVe embeddings nicely, such as time of day or comment count.

Further inspection of our results showed that the vast majority of examples were classified as either
"1" (score of 1) or "19" (score of 1000) or above. Compared to the true label, this indicated that
the model was unable to learn any meaningful difference between the scores of 0, 1, 2, and other
similarly small scores. We suspect this is because there is little or no difference at this level, and it



may depend other factors such as user activity during post submission time that we did not take into
account.

6 Conclusion and Future Work

Overall, we discovered that a classification model proved to be more effective than a regression
approach despite the values given in the raw data. We also discovered that a very small percentage
of posts on Reddit actually do go viral, meaning many additional data pre-processing steps must be
taken to ensure that our model sees viral examples and learns from them within a reasonable number
of epochs.

In our future work, we would like to continue refining this model and perhaps test alternative models
to better predict viral Reddit posts. More specifically, we would like to explore the use of attention
[7] in our model to provide insights about what particular words are weighted highly and may be
good indicators of virality.

There are many other avenues worth exploring however, such as an ensemble model with both
classification and regression components or the incorporation of metadata in the prediction. We
hypothesized that the text title would be a good indicator of virality, but we also believe that using the
metadata can only improve performance in future attempts. Another model we that may be interesting
to explore is experimenting with a binary classification model that will flag whether a post is viral or
not, since most of the labels in our dataset ended up being class "1" or "19" anyways.

7 Contributions

Henry Lin wrote the data cleaning/pre-processing code, monitored model training on AWS instance,
created visualizations, performed hyperparameter tuning, and contributed to the poster. Kristy Duong
wrote the regression and classification models, pre-processed data, and contributed to the poster.

8 Github Repository

Our code is located at https://github.com/henrylnl/CS230. We based our implementation off
publicly available repositories located here:

https://github.com/MorvanZhou/PyTorch-Tutorial/blob/master/
tutorial-contents/403_RNN_regressor.py
https://www. jessicayung.com/lstms-for-time-series-in-pytorch/
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