Typing Biometrics for User Authentication -
a One-shot Approach

Hannes Lindstrom
halindst @stanford.edu
CS 230 - Stanford University

Abstract—In a world of bad passwords, alternative meth-
ods for user authentication is becoming increasingly important.
Keystroke dynamics is the time series data describing the key-
board typing rhythm of a person. It has been shown that this data
can be used as a biometric for identity authentication [1]. While
a variety of different methods to perform such authentication has
been presented, most pose significant challenges in generalizing
to users for which the number of available typing samples is
small. In this paper we propose a novel method, similar to
that of FaceNet [2], where we use metric learning to learn an
embedding of the high dimensional typing samples into a lower
dimensional space, in which the task of performing comparisons
between samples is greatly simplified. We are able to show that
our approach reaches a False Acceptance Rate (FAR) of 10.14 %
and a False Rejection Rate (FRR) of 15.26 % on samples from
users that were never seen during training.

I. INTRODUCTION

In the past decade there has been significant developments in
using biometrics as a means for user authentication. Biometrics
that can be used for authentication come in many forms,
that can broadly be separated into two categories: physical
(e.g. fingerprints, face recognition) and behavioral (e.g. typing
rhythm, voice, gait). In this project we specifically explore
ways of using typing rhythm to authenticate users.

Keystroke dynamics is the time series data describing when
and which keys are pressed and released as someone is typing
on a keyboard. The primary motivation behind the study of such
data is that it has been proved to be an effective unique identifier
of a person, and can therefore be effectively used as a means of
authentication [1]. In particular, using keystroke dynamics has
many advantages compared to other authentication methods.
The keystroke dynamics of a user can be recorded through a
regular keyboard, meaning no specialized hardware is required.
It has also been shown that keystroke dynamics can be used
to continuously authenticate a user of by tracking their typing
and rejecting them if the typing rhythm suddenly changes [3].

II. RELATED WORK

Historically, researchers have experimented with a plethora
of approaches to using keystroke dynamics for the purpose of
authentication. An overview of the more popular methods is
provided by [1]. Broadly, most methods can be categorized
as either purely statistical, based in machine learning, or in
deep learning. Statistical methods range in complexity, from
using generic statistical measures to form a notion of distance

Josef Malmstrom
josefmal @stanford.edu
CS 229 - Stanford University

Key | Event | Time stamp

(6] KeyDown | 63578429797173
R KeyDown | 63578429797235
0 | KeyUp 63578429797313

TABLE I: Structure of the raw typing data.

between typing samples, to more advanced probabilistic mod-
eling (e.g. using Hidden Markov Models). A range of different
machine learning techniques have proved to be somewhat
effective at differentiating users based on their typing data.
Methods that, under the most favorable circumstances, have
been shown to reach False Acceptance Rates (FARs) and False
Rejection Rates (FRRs) of below 10 % include for instance
usage of SVM, random forest decision trees, Gaussian Mixture
Models (GMM), K-means and Naive Bayes [1].

Most recently, there have been multiple attempts at applying
deep learning to the problem of keystroke authentication, for
instance by [3] and [4], which have mostly proven to reach
better or equal performance compared to traditional methods.
A significant challenge with deep learning approaches however,
is the need for large amounts of data on a per user basis. If
for instance a deep neural network is applied as a multi-class
classifier to identify users, the network needs to be trained
on significant amounts of data from each user. Furthermore,
if a new user needs to be enrolled into the system we would
not only need new data, but the architecture would need to be
modified and retrained. Similar challenges occur if training a
One versus Rest (OVR) style classifier for each enrolled user.

III. DATASET AND FEATURES

The dataset used for this project is from a 2016 study on
keystroke dynamics [5]. The dataset consists of text files of
raw typing data from 148 different users. The data is formatted
as presented in Table 1.

As a feature representation of the raw data, we choose to look
at the sequence of digraphs (i.e. key sequences of length two)
and a set of attributes associated with each digraph. Specifically,

we represent each digraph as a vector
¢=[KD H; Hy PP RP] ¢€R’

where KD is an approximation of Manhattan distance between
the two keys on the keyboard, H; and H; are the hold times for

'Note that the data in this table is mock data just to show the structure of
the dataset.

the first and second key respectively (i.e the time elapsed from
pressing to releasing the key), PP is the press-to-press time for
the two keys (i.e. the time elapsed from pressing the first key
to pressing the second key), and RP is the release-to-press time
(i.e. the time elapsed from releasing the first key to pressing
the second key).

While there are many other ways to represent the typing
data for machine learning purposes (such as trigraphs or n-
graphs), the digraph representation is the most common one,
according to [1] among others, which is why we choose this
representation. It is also worth noting that a fairly common
practice is to only include a subset of the hold, press-to-press
and release-to-press times as features. Here, we choose the
most exhaustive set of features with the motivation that the deep
learning approaches we will apply can learn which features
are most critical.

After extracting this feature representation from the raw
data we also segment the resulting sequences of digraphs into
samples of length m, where we experiment with different values
of m approximately in the range [15,100]. Each segment of
digraphs € R™?%5 represents one data sample to be used
for training (or evaluating) a model. A corresponding one-hot
label y € RX indicating which of the K users in the dataset
this sample belongs to is also generated.

IV. BASELINE MODELS
A. Baseline using GMMs

To get an appropriate baseline on our specific data set, we
have implemented an approach described by [6], that uses
Gaussian Mixture Models (GMMs). To give a brief overview
of the method, it uses the EM algorithm to fit a GMM to the
set of press-to-press times associated with the digraphs of one
particular pair of keys. After a GMM has been fit to each the
digraphs of each pair of keys, we have a typing profile for
each user, represented as a set of Gaussian mixtures (one for
each key-pair). To evaluate a new typing sample claimed to
belong to a particular user, we run an algorithm, described in
detail by [6], that computes a score in relation to the claimed
user’s typing profile. A high score indicates that it is likely that
the provided typing sample did in fact come from the claimed
user, while a low score indicates the contrary. Using validation
data, an appropriate threshold for the score is chosen. If the
sample achieves a score equal to or higher than the threshold,
it is accepted, otherwise it is rejected.

Using this approach on our dataset we are able to reach a
FAR of 14.6 % and a FRR of 6.7 %.

B. Baseline using CNN classifiers

One approach to user authentication with keystroke dynamics,
for example utilized by [7], is to train an OvR classifier for
every enrolled user to recognize whether a provided typing
sample is from the user in question (y = 1) or not (y = 0). We
have implemented a version of this approach, with a slightly
modified architecture compared to [7]. The architecture we
used is shown in Figure 1. For all convolutional layers a kernel

of size 2 and a stride of 1 was used. The ReLLU activation
function was used for all hidden layers.

ConviD _ , ConviD L Dense ‘ y
(1,17, 128) L (1,16, 64) VJ (1,1) T

Fig. 1: The architecture used as a classifier for the typing data
of a single user.

Input
(1, 5,100)

Dense
(1,16) ‘

Training this architecture on the logistic loss of 90 % of
the typing data from 10 different users, validating on 5 % and
testing on the remaining 5 %, we were able to achieve the
FARs and FRRs presented in Table II.

User | 0 1 2 3 4 5 6 7 8 9

FAR 0.17 0.08 0.09 0.19 0.23 0.001 0.016 0.25 0.14 0.02

FRR | 0.08 0.09 0.06 0.06 0.11 0.23 0.18 0.03 0.08 0.05
TABLE II: Results for per-user CNN classifiers on 10 random
users.

We can see that both the FAR and FRR for many of the
users are acceptable compared to other approaches, but that the
results are fairly inconsistent across different users. Considering
that the network was trained in the exact same configuration and
with the same hyperparameters, results may however improve
if this was tuned to each user. Even so, the challenges in
employing this approach in an actual authentication system
would be considerable, as described in a previous section.

V. METHODS

In this section we provide the details of our metric learning
based approach. Much like in FaceNet [2], we create a model
that learns an embedding of the high dimensional typing
samples into a lower dimensional space. The goal is to create
embeddings such that embedded samples from the same user
are close, and embedded samples from different users are
distant. This is achieved by training the network using a triplet
loss function. After training the embedding network, a second
model is trained in order to perform the predictions. This
second model is a SVM which is tasked with deciding whether
embedded samples are from the same user or not. Below, we
describe these two elements of the approach in greater detail.

A. Embedding network

Triplet loss: From the typing samples we form triplets, each
consisting of an anchor A, a positive P and a negative V.
The anchor is an arbitrary reference sample, the positive is a
sample from the same user as the anchor, and the negative is
a sample from a different user than the anchor. The triplet loss
with respect to a single triplet is defined as

I(A,P,N) = max(||Aec — Pe|l2 — ||4e — Ne||2 + o, 0) (1)

where A, P, and N, are the embeddings of the triplet, as
computed by the embedding network, and « is a hyperparameter
referred to as the margin. It is clear that this loss function

encourages A, and P, to be close and A, and N, to be
distant, which is what we want. We also see that the margin «
determines how much larger than the AN-distance the corre-
sponding A P-distance needs to be for us to be fully satisfied
and yield a zero loss. Given a batch of n triplets, our objective
function is defined simply as £ = 2 37" | I(A;, P;, N;).

Online triplet mining: A critical problem in triplet learning
is that for randomly formed triplets, many triplets will already
yield a zero loss because |[Ae — Pe||2 + @ < [|Ae — Ne||2. If
many such triplets are used to train the embedding network,
training will be very slow and may not converge at all since
most triplets provide no useful information to the network.
A method introduced by [2] involves selectively generating
each batch of triplets online, as the network is being trained.
Specifically, they present a variety of approaches employing
the selection of so called hard triplets that satisfy the constraint
[|Ae — P.||2 — ||Ae — Nel|2 > 0, and/or semi-hard triplets that
satisfy the constraint —a < [|Ae — P.||2 — ||Ae — Nel|2 < 0.

For instance, [2] present a method referred to as batch-all
where, for each mini-batch of data they generate all valid
triplets but keep only triplets that are hard or semi-hard. We
use a slightly modified version of this approach, where we
generate all valid triplets for the mini-batch, but only keep the
semi-hard triplets.

Architecture: The architecture of our embedding network is
illustrated in Figure 3. The network takes typing samples in
R5*190 (i e. m = 100) and generates embeddings in R*°. The
convolutional layers of the network consist of an Inception-
like [8] architecture. All convolutional and fully connected
layers in the network use the ReLU activation function. For the
convolutional and max-pooling layers, we use ’same’ padding.

The reasoning behind using a shallow embedding network
can be described by a few observations about our data. First
of all, the data does not contain very many latent features.
Most computer vision tasks require the network to be able
to recognize very complex patterns spanning large parts of
the input (which itself usually is much larger). In the task we
are facing, however, the patterns we are attempting to identify
can be assumed to be fairly local. The relationship between
how the keys are pressed down at the start of a sentence in
comparison to the end of another sentence two minutes later,
is not very important. It might be more interesting to localize
these short-term patterns, and then average them over the entire
input. This does of course remove some of the expressive
abilities of the network, however, it can be a good method for
combating overfitting. This is our motivation behind the usage
of a global average pooling layer in the network, which also
decreases the number of parameters in the dense layer thereby
further decreasing the risk of overfitting. In comparison to other
models that were tested, this combination of the Inception-style
layer and global average pooling worked the best in allowing
the network to create fairly expressive embeddings while not
overfitting the training data.

In addition to the convolutions, two important aspects of the
embedding network is the Batch- and L2-normalization layers.

This combination allowed for significantly higher learning
rates without having the embeddings collapse into a single
point. These results can mainly be attributed to the Batch-
Normalization layer, which is known to be able to reduce
the number of training epochs required [9]. However, the two
types of normalization were found to work best when used
in combination. Another advantage of L2 normalizing the
embeddings is that since all embeddings are contained on the
unit hypersphere, it is possible to use a constant margin in an
effective manner.

Hyperparameters: There is a variety of hyperparameters to
be set for the embedding network. We found the most critical
parameters to be the learning rate used during training, as
well as the triplet loss margin «. For the the learning rate, we
used 0.5 x 1072, We experimented with a range of range of
values for the triplet margin ¢ in the interval [0, 1]. We found
that a value of @ = 0.3 gave the best results. Generally we
found larger mini-batch sizes to be beneficial for training, as
this means there will be a larger number of valid semi-hard
triplets in each batch. However, since all valid triplets in a
mini-batch must be generated in order to identify the semi-hard
ones, and the number of valid triplets grows cubically with
the mini-batch size, the choice of size is strongly limited by
the amount of available memory. For our machine, we found
a mini-batch size of 128 to be a reasonable trade-off.

Positive +[A, — P,]

Prediction
1=Same User
0 = Different Users

Anchor t[Fe — Nel

+ i
Negative t[4e — Ne]

Fig. 2: Tllustration of the prediction model.

B. Prediction model

Given a trained embedding model, we still need a model
that can make predictions on a given pair of embedded samples
to determine whether they are from the same user (y = 1)
or different users (y = 0). To create such a model, we
train a Support Vector Machine (SVM) on the difference
between embeddings (element-wise). Much like in training
the embedding network, we form triplets (4., P., N.), and
let the element wise differences between pairs in the triplet be
training examples for the SVM model, with the appropriate
label (i.e. 1 if the embedded samples are both from the same
users, and 0 if the embedded samples are from different users).
This procedure is illustrated in Figure 2. Note that we let both
signs of the element wise differences be training examples,
since for instance [P, — A.] is an equally valid example as
[Ae — P.].

To use the trained prediction model to make predictions on
samples of data, we trial two different methodologies:

ConviD
Filters: 16
Kernel: 3

4

1D
Input Conv.

Dense I,-normalize

Filters: 16 lobal
Kernel: 5

\\\\\\\ MaxPool1D
Size: 3

(1, 5,100)

Filters: 16

ConviD
Padding: same Kernel: 1

> Units: 40 —> (1,40)

Fig. 3: The architecture used in the embedding network.

o The query sample is matched with a single reference
sample from the same user. Both are fed through the
embedding network, and their element wise difference are
fed through the prediction model. The output of the SVM
is used as prediction.

« The query sample is matched with five different reference
samples from the same user. All are fed through the
embedding network, and the element wise difference of
each query-reference pair are fed through the prediction
model. The majority vote of the outputs from the SVM
for each query-reference pair is used as prediction.

Hyperparameters: To tune the hyperparameters of the
SVM model, we performed a grid search on validation data
across different kernels (linear, polynomial and RBF), and an
exponentially growing range of values for C' and . We found
an RBF kernel, C'=1 and v =1 to yield the best results.

VI. RESULTS

We trained our embedding network and prediction model on
90 % of the typing samples from 30 different random users,
validated on 5 % and tested on the remaining 5 %. We also
tested our trained system on all the typing samples from 30
other random users, that were not seen during training.

Resulting FAR and FRR when testing with the two prediction
methodologies on samples from the 30 users that were seen
during training and the 30 users that were not seen during
training can be found in Table III and IV respectively. As a
means for visualizing the learned embedding, we run the t-SNE
dimensionality reduction algorithm on the training data as well
as on samples from the 30 users that were not seen during
training. Resulting t-SNE plots can be found in Figure 4.

5 references

7.63 %
6.61 %

single reference
8.69 %
12.29 %

TABLE III: Non-generalized results.

FAR
FRR

5 references
10.14 %
15.26 %

single reference
12.05 %
19.75 %

TABLE IV: Generalized results.

FAR
FRR

60

(b) 30 random users that were not seen during training.

Fig. 4: t-SNE of embeddings for samples from users that
were seen during training, and other random users. Each color
represents a different user.

VII. DISCUSSION

Comparing the results to the performance of our baselines
as well as a variety of other methods, from [1] for instance,
we see that our approach is on par with other methods in terms
of FAR and FRR. In addition, we see that by using the 5
reference majority vote prediction methodology, we can reach
a respectable performance on users that were not seen during
training, with a FAR of about 10 % and a FRR of about 15 %.

It is also worth noting that these results were attained by
training on the data from only 30 different random users.

One could expect that the generalizability of the model would
improve if it was trained on data from a wider variety of
users, however as the number of users increase training the
embedding network also becomes more challenging.

For the embedding network, we experimented with a variety
of different architectures and found early on that convolutional
architectures seemed to yield better performance than recurrent
models. However, our experiments with recurrent architectures
were fairly limited and it could therefore be of interest in
future work to explore further whether a recurrent model can
be effectively used as an embedding network in this application.

Another noteworthy detail is that all the keystroke dynamics
data we used, for training as well as testing, was generated using
the same model of keyboard. It is expected that generalizing
to different keyboard models is more challenging, as a given
person typically has a different typing rhythm on different
keyboards. The typing patterns of a person can also be highly
variable due to a range of different factors other than the
choice of keyboard. Studies have for instance shown that a
person’s typing rhythm changes significantly when they are
tired [10]. One can also imagine that someone’s typing rhythm
is drastically different when typing with just one hand instead
of two. In general, further studies are needed to explore the
effect of these factors on an authentication system, and to
potentially come up with methods for maneuvering them. For
example, a possible approach for handling a variety of these
factors could be to detect and maintain multiple identities for
each user, based for instance on which keyboard they are using,
their physical state etc.

On the other hand, there could also be possibilities to
leverage the variability caused by these factors for other applica-
tions. For example, one could experiment with using keystroke
dynamics to detect fatigue or intoxication in workplaces where
prolonged focus is critical (e.g. emergency phone services,
flight control).

VIII. CONCLUSION AND FUTURE WORK

The proposed metric learning approach worked well on the
studied test cases, reaching a FAR of 7.63 % and a FRR of 6.61
% on samples from users that were seen during training, and a
FAR of 10.14 % and a FRR of 15.26 % on users that were not
seen during training. Future aspects to be studied include how
this system functions at scale, when the number of users is in
the hundreds or thousands and whether this approach can be
extended to work well for users that switch between different
keyboard models. Additionally, an interesting aspect would be
to study whether this type of system could be effectively used
for other applications, such as detecting fatigue or intoxication.

IX. CODE

The source code for the project is
https://github.com/lm-strom/typing-net.

available at

X. CONTRIBUTIONS

This was a joint project between two courses: CS 230
(Hannes) and CS 229 (Josef). Since the project is not clearly
separable into the parts done for CS 229 and the parts done for
CS 230 without loss of context, we have submitted the same
report for both classes. Both group members collaborated
closely on nearly all parts of the project, and it is therefore
difficult to distinctly separate which parts were worked on
by who. While we believe such a split does not really make
sense, a somewhat arbitrary separation is given below. Any
part of the project not listed below was undoubtedly done in
equal part by both group members.

Josef (CS 229)

o Implemented GMM baseline.

o Implemented OvVR classifier baseline.

o Implemented online mining of triplets.

o Implemented, tuned and trained the SVM prediction
model.

Hannes (CS 230)

« Implemented preprocessing of raw typing data into the
digraph feature representation.
« Implemented, tuned and trained the embedding network.

REFERENCES

[1] P. S. Teh, A. B. J. Teoh, and S. Yue, “A survey of keystroke dynamics
biometrics.” TheScientificWorldJournal, vol. 2013, p. 408280, 11 2013.
[Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/24298216http:
/Iwww.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3835878

[2] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A Unified
Embedding for Face Recognition and Clustering,” pp. 815-823, 2015.
[Online]. Available: https://www.cv-foundation.org/openaccess/content_
cvpr_2015/html/Schroff_FaceNet_A_Unified_2015_CVPR_paper.html

[3] L. Xiaofeng, Z. Shengfei, and Y. Shengwei, “Continuous authentication
by free-text keystroke based on CNN plus RNN,” Procedia Computer
Science, vol. 147, pp. 314-318, 1 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050919302935

[4] H. Ceker and S. Upadhyaya, “Sensitivity analysis in keystroke dynamics
using convolutional neural networks,” in 2017 IEEE Workshop on
Information Forensics and Security (WIFS). 1EEE, 12 2017, pp. 1-6.
[Online]. Available: http://ieeexplore.ieee.org/document/8267667/

[5]1 Y. Sun, H. Ceker, and S. Upadhyaya, “Shared Keystroke Dataset for
Continuous Authentication,” in 8th IEEE International Workshop on
Information Forensics and Security, Abu Dhabi, UAE, 2016. [Online].
Available: https://cubs.buffalo.edu/research/datasets

[6] H. Ceker and S. Upadhyaya, “Enhanced recognition of keystroke
dynamics using Gaussian mixture models,” in MILCOM 2015 - 2015
IEEE Military Communications Conference. IEEE, 10 2015, pp. 1305-
1310. [Online]. Available: http://ieeexplore.ieee.org/document/7357625/

[7]1 P. Kobojek and K. Saeed, “Application of Recurrent Neural Networks
for User Verification based on Keystroke Dynamics,” Journal of
Telecommunications and Information Technology, no. nr 3, pp. 80-90,
2016. [Online]. Available: https://www.infona.pl/resource/bwmetal.
element.baztech-c0824cfa-8493-417d-8caa-6400754aca32

[8] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going Deeper with Convolutions,”
Tech. Rep. [Online]. Available: https://www.cs.unc.edu/~wliu/papers/
GoogLeNet.pdf

[9] S. Ioffe and C. Szegedy, “Batch normalization: accelerating deep

network training by reducing internal covariate shift,” pp. 448-456,

2015. [Online]. Available: https://dl.acm.org/citation.cfm?id=3045167

M. Ulinskas, M. WozZniak, and R. DamaSeviCius, “Analysis of

Keystroke Dynamics for Fatigue Recognition.” Springer, Cham,

2017, pp. 235-247. [Online]. Available: http://link.springer.com/10.1007/

978-3-319-62404-4_18

[10]

