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Abstract

One of the principal challenges of municipal waste sorting originates with consumers improp-
erly disposing of waste; this leads to waste streams that are more difficult to sort effectively
at recycling plants. In turn, this paper explores the task of automated waste classification into
one of five recyclables (cardboard, glass, metal, paper, plastic), compost, or landfill-bound
trash. Two different convolutional architectures (ResNet101 and MobileNetV2) serve as
the basis for experimentation. Three distinct transfer learning settings are tested: (1) fixed
feature extraction; (2) partial finetuning of the network; and (3) full finetuning. We find that
full finetuning is the most effective transfer learning treatment for this task. Moreover, while
the ResNet101 model achieves superior accuracy (91.6%), the lightweight, resource-efficient
MobileNetV?2 achieves comparable results (90.1%), suggesting that waste classification can
be deployed on mobile hardware to directly address improper recycling practices.

1 Introduction

Despite increased efforts in recent years to educate consumers on best practices for recycling, municipal waste
stream contamination remains a serious problem. The ability of consumers to properly differentiate between
different waste types and dispose of them appropriately is a key component in ensuring that recyclable and
compostable waste is in fact processed separately and not redirected to landfill due to over-contamination.

In turn, we seek to investigate the task of waste classification, i.e. differentiating between waste that is
recyclable, compostable, and landfill-bound. We are motivated by the long-term goal of creating a mobile
application that allows users to use their phone camera to determine which items can be recycled or composted
instead of sent to landfill. Fundamentally, our problem is a multilabel supervised image classification problem.
Given an input image of a piece of waste, we classify the input into one of seven categories: trash, compost, or
one of five recyclables (cardboard, glass, metal, paper, plastic) and output the appropriate predicted label.

Little work has been done to develop robust assistive tools for consumers, and as such, we explore three
separate transfer learning methods utilizing pretrained models to solve this task: fixed feature extraction; partial
fineuning; and full finetuning. For model selection, we first consider the highly representative ResNet101
model, in order to assess task feasibility using top-level predictive power [3]. After achieving promising results,
we then examine the MobileNetV2 model, a lightweight model specifically tailored for mobile applications[4].

2 Related Work

The problem of recycling-based waste classification is a fairly novel and subsequently understudied task. In
our survey of prior work, the work of Yang and Thung (2016) was found to be among the most relevant to
this task [11]. The authors implemented a CNN based on the AlexNet architecture to classify images as either
landfill-bound trash or into one of five recyclable categories (paper, glass, plastic, metal, cardboard). However,
their final CNN model result was ultimately unsuccessful (22% accuracy compared to their SVM baseline
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accuracy of 63%). The authors attributed their model performance in part to the scarcity of their data, which
had mostly been collected by hand, despite their use of data augmentation. The work is relevant in that it
highlights primary areas of concern for our own work (data sufficiency), and is a useful starting point for
characterizing the classification problem and model architecture.

The work of Bircanoglu et al [2] represents a more recent and successful result building off of Yang and Thung’s
TrashNet dataset, using DenseNet to achieve high test set accuracies (75%-95%). Chu et al [5] developed a
multilayer hybrid model architecture with a CNN based on AlexNet, measured against a pure CNN baseline,
achieving test accuracies of >90% on their own waste dataset. These findings are relevant as they demonstrate
high performance on TrashNet and other datasets with the use of more advanced convolutional models.

3 Dataset and Data Preprocessing

We use the TrashNet dataset collected by Yang and Thung [11] as the base of our dataset. The dataset contains
colored images of waste labelled as one of six classes; five categories of recyclables: paper, plastic, metal,
cardboard, and glass, and one ‘trash’ category. Each recyclable category contains about 400-500 images while
the trash class contains 138 images, totaling 2,527 images. We augment the TrashNet dataset with an additional
926 images across the six categories as well as 300 new images of pictures of waste in the novel compost
class. We hand-collect the data by taking photographs of waste using cell phone cameras, such that the images
resemble input from the intended mobile use case. This results in a full dataset size of 3,753 images.

Our own data is preprocessed to match the TrashNet dataset, such that our images are first resized to the
same resolution: HxWxC = 384x512x3. We adapt the resizing code written by Thung and Yang in [11] to
accomplish this preprocessing step. We then resize all 3,753 images to dimension 224x224x3 (standard input
size for ResNet101 and MobileNetV2 networks). We divide the full dataset into training, validation and test
sets, split at 70/15/15 respectively. The combined dataset is still small and we choose to use data augmentation
techniques on the training set to help remedy this problem. The transforms include random crops and random
flips of the training set images. We also performed manual re-labeling of some of the orignial TrashNet images
to comport with our class formulation (e.g. images labelled as plastic which are in fact non-recyclable).

4 Methods

As mentioned above, this task is framed as a multilabel image classification problem in which an input image
is classified into one of seven waste classes. The use of transfer learning is a natural choice given the novelty
of the problem and the small size of our dataset. However, the exact transfer learning technique that should
be utilized is less obvious. Typically, transfer learning is applied via one of three mechanisms: (1) using the
pretrained model as a fixed feature extractor, freezing all pretrained layers and only retraining the final linear
classifier; (2) keeping a specified number of earlier layers fixed and finetuning only the higher-level portion of
the network; or (3) finetuning all layers of the network. Deciding which mechanism to employ for a new task
depends on several factors, most notably the size of the new dataset and its similarity to the original dataset.
Moreover, the three techniques differ in their computational impact (increased computational load as additional
layers are tuned) and have different implications when considering resource-constrained environments.

As such, we experiment with the three aforementioned learning techniques and evaluate performance of each
applied to two distinct convolutional architectures, both of which are illustrated in Figure 1. We compare these
models to a baseline support vector machine model. For the deep models, we use standard cross entropy loss:
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Overall classification accuracy is used as an evaluation metric and confusion matrices are computed for analysis.

4.1 Support Vector Machine with Featurization

Our baseline model for this task is a support vector machine (SVM) classifier with a radial basis function
(RBF), with hyperparameter values v = 1le — 4 and C' = 1e4. An RBF SVM baseline was chosen due to the
simplicity of its implementation as well as its demonstrable efficacy in recycling image classification tasks
[11], thereby making it a suitable lower performance bound for our model. Furthermore, we use a histogram
of oriented gradients (HOG) featurization approach for our baseline model after evaluating several different
feature representations and observing that the HOG featurization realized the best classification performance.
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Figure 1: Convolutional Model Architectures adapted for our task.

4.2 ResNet101

We base our first model on the 101-layer ResNet model proposed by He et al [3], due to its enhanced complexity
and greater representative power compared to other architectures, such as AlexNet, previously explored for
this task [11],[5]. The ResNet101 model introduces residual connections that enable the construction of much
deeper networks while offering lower computational complexity than other deep architectures. Specifically,
residual connections reformulate layers as residual blocks which not only feed into the subsequent layer, but
also into layers several steps downstream through ("skip connections"). After establishing task feasibility with
the complex and compute-expensive ResNet101, we examine the much more lightweight, efficiency-focused
MobileNetV2 architecture, which is more well-suited to our task.

4.3 MobileNetV2

Given that our intended target use case is a mobile application, we test the lightweight MobileNetV2 model
proposed by Sandler et al [4]. MobileNetV2 is an efficient deep neural architecture that uses depth-wise
separable convolutions to build lightweight, low latency models that are well-suited for mobile and embedded
vision applications. The depthwise separable convolution factorizes a convolution into separate depthwise and
pointwise convolutions. This factorized architecture reduces computational cost by a factor of almost k2 (i.e.
8-9x cost-savings for 3x3 convolutions). Other techniques such as linear bottlenecks (inserting linear layers to
reduce dimensionality) and inverted residuals (“shortcut” connections between bottleneck layers to facilitate
gradient flow) are employed to further streamline model memory- and compute-efficiency.

5 Experiments/Results/Discussion

5.1 Transfer Learning Setup

All of our models and experiments are implemented using the PyTorch deep learning framework [9]. For
all three transfer learning techniques, we pretrain the convolutional models on the ImageNet dataset prior
to applying them to our task. We use [10] to set up the pretrained model for the ResNet101 networks, and
slightly adapt the implementation of MobileNetV2 provided by Lin in [8]. We also make use of [6] and [7] for
additional guidance. To utilize the pretrained models, we replace the last fully connected layer of each model
with a seven-node fully connected layer, corresponding to the seven output classes. We then apply one of the
three transfer learning treatments: (1) fixed feature extraction; (2) partial finetuning; and (3) full finetuning.

The deep models are trained using Adam optimization for a duration of 30 epochs and a batch size of 64, as
these hyperparameters produced the optimal validation-set results overall across all models. Hyperparameters
specific to each model are also tuned on the validation set, and include learning rate, learning rate decay
schedule, and number of layers kept fixed (for learning method (2)). For each architecture, we choose the
method that performs best on the validation set to use during test-time evaluation.



| Model | £ [« [v [n ] | Model | £ [ Train Acc. | Val Acc. | Test Acc. |
ResNet101 (1) | 1.5¢e4 | 0.1 | 10 SVM - 0.998 0.565 0.546
ResNet101 (2) | led 0.1 |7 ResNet101 (1) | 0.739 0.786 -
ResNet101 (3) | led 0.1 |7 ResNet101 2) | 0976 0.937 -
MobileNetV2 | (1) | 1e2 0.1 |7 ResNet101 A3) | 0977 0.944 0.916
MobileNetV2 | (2) | Se4 0.1 |7 MobileNetV2 | (1) | 0.771 0.817 -
MobileNetV2 | (3) | 8e4 0.1 |7 MobileNetV2 | (2) | 0.955 0911 -

. MobileNetV2 | (3) | 0.952 0.921 0.901

(a) Summary of hyperparameter settings for each

deep model, by transfer learning method, £. o = (b) Classification performance of all candidate models on

learning rate, vy = learning rate decay factor , n = the train and validation sets, using each learning method, L.

learning rate decay step size (in epochs). Classification performance of the final models on the test set.

Table 1: Classification performance with the given hyperparameter settings for the candidate models.

5.2 Candidate Model Comparison

Table 1b summarizes the classification performance of the baseline model compared with both deep models
under the various learning methods, as evaluated on the training and validation sets, as well as test-set
performance of the final three models. Table 1a summarizes the hyperparameter settings for the deep models.

As discussed above, our baseline model is an RBF SVM with HOG featurization. Previous work has indicated
that SVM classifiers exhibit enhanced performance using custom features for more complex data representations
[1], and exploration of these candidate featurizations revealed that the HOG featurization performed best for
our task. Although the very high training accuracy (99.8%) indicates overfitting, performing granular parameter
tuning to remedy this issue was practically infeasible due to the very long training times for the RBF SVM.

For the ResNet101 model, we find that the optimal finetuning strategy for learning method (2) is to freeze
layers up to and including the four 128/512 residual blocks, and finetune all subsequent layers. As Table 1b
shows, the ResNet101 model used as a fixed feature extractor significantly underperforms the other ResNet101
models, but realizes a notable performance gain after finetuning, and obtains the best training and validation
accuracy of any model when fully finetuned (validation accuracy of 94.4% and final train loss of 0.1239).
Accordingly, we choose the fully finetuned version as the ResNet101 model used for test-set evaluation.

For the MobileNetV2 model, the number of layers kept fixed in the partially finetuned setting is set to 10 after
exploring best performance on the validation set. As with ResNet101, learning method (1) fares the worst, with
a significant performance jump after finetuning. We observe that the partial and fully finetuned MobileNetV2
models attain training and validation accuracies comparable to ResNet101. We select the fully finetuned model
for test-time evaluation given its superior validation performance (92.1%, with a final train loss of 0.1543).

5.3 Final Model Comparison

As shown above, the full-finetuning setting proved to be the most effective transfer learning method regardless
of model architecture, and was selected for test-time evaluation in both cases. Further inspection of the test-set
performance of the final models illustrates additional significant results. As Table 1b shows, both convolutional
models outperform the baseline by a comparable and significant margin. The exact classification accuracies of
the deep models on the test set fall in line with the training and validation set results discussed above. Here,
we find that ResNet101 model achieves the highest accuracy, at 91.6%, while the MobileNetV2 model is
impressively close, reaching 90.1%. The consistency and strength of these results suggest that our strategies for
fully finetuning the convolutional models correctly balanced the trade-off between additional finetuning of the
model to the task of interest, and the benefits of transfer learning in addressing the limitations of our dataset.

5.4 Error Analysis

Inspecting the confusion matrices in Figure 2 illustrates the superior performance of the deep models over the
baseline, in terms of both accuracy (globally across all classes) as well as precision (spread of misclassifications
for a given class prediction). This verifies that our convolutional models exhibit better predictive power for
all waste classes. Yet, certain misclassification trends are still evident. We see poor performance for the trash
category both in terms of precision (many non-trash items incorrectly categorized as trash) and recall (many
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Figure 2: Confusion matrices for the final SVM, ResNet101, and MobileNetV2 models.

trash items incorrectly categorized as non-trash). This may be explained in part by a slight class imbalance; the
trash class suffers the lowest number of images. We thus plan to increase this number to remedy the problem.

Figure 3 displays some concrete examples of images misclassified by MobileNetV2 on our dataset. Visual
inspection reveals that many of these errors are in fact associated with ground-truth visual ambiguity between
two different class types. For instance, certain types of compostable items appear very similar to plastic
(e.g. image 4 in Figure 3) and cannot be readily differentiated as compost by a human. We also see cases
of misclassification between paper, cardboard, and compost, since both paper and cardboard are typically
also compostable (as seen in image 6). Other misclassifications arise from noisy data — images which are
blurry, highly zoomed, or poorly cropped (images 1, 2, and 3). This exercise indicates that even for our most
lightweight model, typical errors comport with edge cases for human-level recognition, which is an indicator
that the model performance is conceptually aligned with the nature of this classification task.

predicted: paper predicted: paper predicted: paper predicted: plastic predicted: compost predicted: compost
actual: glass actual: cardboard actual: plastic actual: compost actual: trash actual: cardboard

TR

Figure 3: Examples of misclassified images with their ground-truth labels for MobileNetV?2 with full finetuning.
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6 Conclusion and Future Work

In this paper, we explore three different transfer learning settings applied to ResNet101 and MobileNetV2 for
classifying images of waste into seven different categories. We find that all variants of convolutional models
outperform our SVM baseline by large margins. While the fully finetuned ResNet101 model achieves the
highest test set accuracy among all candidate models, we emphasize the performance of the lightest and most
computationally and memory efficient model, MobileNetV2, given our ultimate intended use case. Under full
finetuning, the MobileNetV2 architecture achieves an impressive 90.1% accuracy on the test set, demonstrating
the potential for this model to be deployed as part of a mobile application.

Based on the preliminary results achieved thus far, as well as our envisioned end use-case for our model, there
are several key avenues for further work. Firstly, we would like to continue expanding and enriching our dataset,
especially in the ‘trash’ and ‘compost’ classes, since data limitations were identified early on as a key challenge
for this task, and one which has significant implications on model performance and generalizability. Moreover,
as we refine our model in preparation for its intended end use-case of mobile deployment, we plan to consider
additional factors beyond simple predictive performance, including: the ability of the model to run on mobile
hardware; the model’s real-time classification performance on mobile hardware; and incorporating additional
instructive guidance along with the classifications in order to aid users (e.g. special disposal instructions or
considerations that may apply for certain types of recycling or specific edge cases).
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