Detecting Brain Tumors in Low Quality Magnetic Resonance Images
Computer Vision — Healthcare
Venkat Yerramsetti (venkaty) - https://github.com/vypr213/c230_final

Abstract
This project explores how the 2D U-Net, 3D U-Net and V-Net models perform at the brain tumor
segmentation task, when the input image quality is degraded. These models were implemented
from scratch and trained on a combination of high and low quality images, respectively, taken
from the 2018 BraTS dataset [1] [2] and a low quality dataset generated from the original BraTS
dataset. Results were inconclusive due to bad ground truth labels for the low quality dataset.

Introduction:

Neuroimaging has been extensively used for such brain tumor detection and also to evaluate the
chosen treatment and the progression of the disease [1]. Since manual annotation of neuroimages
is a very tedious and error prone task, deep convolutional neural networks have been designed to
automatically and quickly detect tumors in MRIs using segmentation techniques [3] [4] [5].
However, one problem with using neuroimages for automatic tumor detection is that these images
could be suffering from quality degradation due to device calibration errors, subject movement,
etc. In this project, I explored whether the existing models, that produced very good segmentation
results, perform just as well when the input image quality is degraded. I implemented 2D and 3D
U-Net and V-Net models, and trained them on a mix of high quality and low quality images
obtained from the BraTS 2018 dataset and a dataset of degraded images obtained by applying
random deformations to the images in the BraTS 2018 dataset. Initial results show poor
performance for all the models. Doing error analysis, showed that the labels for about 50% of the
generated, low quality images were faulty, which resulted in underfitting. Due to lack of time, the
models could not be retrained with corrected ground truth labels, so the models’ performance on
low quality images could not be conclusively determined.

Related Work:

Deep convolutional networks have dominated visual recognition tasks in the past few years.
Consequently, several convolutional models were developed for the task of general image
segmentation [5] [6] et. al. which used fully convolutional networks and were usually trained on
relatively large datasets. However, for biomedical image segmentation, datasets tend to be very
small, so newer convolutional networks were developed to cope with such small datasets. In [7],
Ciresan et. al proposed a convolutional network using the sliding-window technique to segment
neuronal structures. This network has the advantage of increasing the training data with multiple
patches, but it is very inefficient due to repeated calculations on overlapping areas. By using a
fully convolutional network and skip connections, the U-Net model [8] demonstrated superior
segmentation results. Cicek et. al [9] extended the 2D U-Net model to 3D volumetric data which
constitutes majority of biomedical data. Furthermore, in [10], Milletari et. al. developed a similar
volumetric network with additional skip connections within each layer for faster convergence.
While all of these models produced very good results, they were trained with high quality image
data. In reality, biomedical images might not be always available in high quality. This project
explores the question of whether these models could produce equally superior results even with
the low quality images.

Data:

I used the BraTS 2018 dataset for training the models. This dataset contains MRI scans for 285
patients. For each patient, four MRI scan are provided, which correspond to four modalities,
namely 1) native (T1), 2) post-contrast T1-weighted (T1Gd), 3) T2-weighted, and 4) T2 Fluid
Attenuated Inversion Recovery (FLAIR). Besides these images, a single image containing
segmentation labels is also provided. The labels are 4 for GD-enhancing tumor, 2 for peritumoral
edema, and 1 necrotic and non-enhancing tumor core, and were generated by one to four
annotators, and were approved by experienced neuro-radiologists. The different labels correspond
to different sections of the tumor, and all of the labels together segment the whole tumor region.
Different combinations of the four modalities, stated above, are used to predict the different labels.
For simplicity, this project focused on predicting only the whole tumor.

Data Preprocessing:

In order to simulate the low quality MRI scans obtained in the field, a new dataset was generated
by applying small, random deformations to each MRI scan in the original BraT$S dataset. The same
deformations were also applied to the corresponding ground truth labels.

Original Deformed

Figure 1 Example slice from the original image (left) and the corresponding deformed image
(right). Tumor labels are show in blue. Notice that the deformation is also applied to the label for
the deformed image

Then, the data was randomly separated into train/dev/test sets containing 200/55/30 examples
respectively. Each of these sets contains equal number of images from the original BraTS dataset
and the generated, low quality dataset. In order to use the same train, dev, and test sets for the
entire duration of the project, the IDs (directory path) of the examples () were stored in text files.

Each MRI scan for a given example is a (240, 240, 155) volume. In order to work well with the
3D models, the input was padded to get the shape of (240, 240, 160). As stated above, the dataset,
consists of four MRI scans for each patient. During preliminary training, all four MRI scans were
combined into a single image with four channels to produce an input of shape (4, 240, 240, 160)
using the ‘“channels_first” convention. However, whole tumor can be identified using just the
FLAIR MRI scan, so speedup training and reduce memory usage, only the FLAIR scan was used
in later training rounds. This had brought down the input shape to (1, 240, 240, 160).

Because of the huge size of a single example, a data generator was implemented to feed one
example at a time into the model. When feeding the input to the 2D U-Net model, the data
generator splits each example into 155 2D images of shape (?, 240, 240), where ? corresponds to
the number of channels. Notice that the image doesn’t need to be padded for the 2D model. Finally,
before feeding the input into a model, the data generator normalizes it to zero mean and a standard
deviation of one.

Models:

I implemented three models namely 2D U-Net [8], 3D U-Net [9], and V-Net [10]. All models are
based on the original architectures, but with a few changes to adapt them to this project’s data and
to satisfy computing resource constraints. All of the models have a “contracting path”, where the
input features are gradually down sampled, followed by an “expansive path”, where the features
are gradually up sampled to the original input size.

For the U-Net models, the “contracting path” consists of four down convolutional blocks, where
each block contains two 3x3 convolutions with ReLLU activations, followed by a 2x2 max pooling
layer with a stride of 2. The “expansive path” consists of 4 up convolutional blocks where each
block consists of a 2x2 up-sampling convolution, followed by a concatenation with the activations
of the corresponding layer in the contracting path, which is, then, followed by two 3x3
convolutions with ReLU activations. The down-convolution segment and the up-convolution
segment are joined by a sequence of two 3x3 convolutions with ReLU activations. Finally, the
output layer consists of a 1x1 convolutional layer, with sigmoid activation. Both 2D and 3D U-
Net models follow this same structure except that with the difference that the 2D model uses 2D
convolutional operations whereas the 3D model uses corresponding 3D convolutional operations.

Conv
Concat
Conv
Conv
Conv

MaxPool |<| Conv oo
@

Concat
cov__|»
m

UpConv.

I T
[_Conv |
Conv
y
Concat
@“
N
I@“’
N

[cov R
[cov |2

H

Figure 2 Structure of U-Net models. Each "Conv" layer (blue) uses a kernel of size 3 with the number of kernels shown above each
block. Each MaxPool (orange) halves the size of input to the layer. Each UpConvy (purple) doubles the size of input to the layer

Concat

>
=
o

2
8 > >
:1 = =
?é 8 8

For the V-Net model, the contracting path consists of four down convolutional blocks, where each
block consists of one or two or three 5x5x5 convolutions with PReLU activations. Each down
convolutional block also implements a skip connection using elementwise sum of the block’s input
and the output of the last convolution of the block. Unlike U-Net, the V-Net model down samples
the input by using a 2x2x2 convolution with stride 2, which provides an opportunity to double the
number of feature channels and could potentially reduce memory usage by avoiding the switches
needed for MaxPool layers. The “expansive path” consists of four up convolutional blocks, where
each block starts off with concatenating (except the first block) its input with the activations of the
corresponding layer in the contracting path followed by one or two or three 5x5x5 convolutions
with PReLLU activations. Similar to the contracting path, each block implements an elementwise
sum based skip connection between its input and the output of the last convolution of the block.
The final layer is a 1x1x1 convolution with sigmoid activation.

Loss Functions:
During preliminary training, pixelwise cross-entropy loss was used as a baseline loss. However,
the primary loss function throughout the entire training was the dice loss proposed in [10].

25 3 *y)

Dice Loss = — —
Xy + 2y

I also experimented with a new compound loss function incorporating the feature loss based on a
pretrained VGG19 network as proposed in [11]. Here, the feature loss is calculated between the
predicted segmentation labels and the ground truth labels.

Compund Loss = vggjyss + dice; s

g 5x5x5 Conv

2x2x2 Conv
& with stride = 2

stride = 2

2x2x2
UpConv with

Figure 3 Structure of V-Net model. Number of kernels for each level are shown at the bottom of the "Conv" layers (blue)

Training:

All models were initially trained for 50 epochs with a batch size of 1 for 3D models and 155 for
2D models. This batch size was chosen to avoid memory exhaustion. Using a learning rate of 1e 3
caused the models to diverge after a few epochs. Upon tuning, 1e ~* seemed to work well for faster
convergence and avoiding plateaus. For the optimizer, I initially used the stochastic gradient
descent with momentum, and then switched to Adam, which caused a huge speed up in the training.

Results and Analysis:

During initial training, I used the “accuracy” metric, which in retrospect, is ill suited for the dataset
at hand because the dataset is highly imbalanced. Majority of the ground truth label data is
comprised of background, which is annotated as Os. Because of this model was able to achieve
very high accuracy by predicting the background labels most of the time. Subsequently, the metric
was switched to dice coefficient.

Model Train (N = 200) Dev (N = 55) Test (N = 30)
Unet2D 0.7499 0.6438 0.6860
Unet3D 0.7683 0.6322 0.6882
Vnet3D 0.8515 0.6225 0.6492
Unet2D (w/ vgg) 0.6885 0.6345 0.6785

Figure 4 Dice scores after training the models for 150 epochs

Training on the original BraTS dataset, the models achieved about 85% dice score. However, when
the generated, low quality images were added to the dataset, the models plateaued at about 73%
dice score, and couldn’t improve even on the train set loss. The was caused due to data loader
erroneously producing different training examples for each epoch, thus causing an input covariate
shift. Fixing this problem, the models suffered from high bias and high variance problem. Using
L2 regularization with a lambda value of 0.001 resolved the high variance problem, but the bias
problem persisted as we can see below.

Unet2D Unet3D V-Net

Figure 5 Train (blue) and Dev (orange) losses for 2D U-Net, 3D U-Net, and V-Net

Unet 20 Unet 3D Vnet

Figure 6 Train (blue) and Dev (orange) losses for 2D U-Net, 3D U-Net, and V-Net after applying L2 regularization

Performing error analysis and visualizing several examples revealed that the ground truth labels
for many of the generated low quality images were missing or were shifted. I believe, this was
caused due to a faulty random translation applied to some images. Moreover, visualizing test set
examples show that the ground truth labels for majority of them were not affected by the random
translation. I believe, this was the reason for the dice scores that were better than the train and dev
sets in Figure 4. While I was able to fix the generated dataset with the correct labels, I couldn’t
retrain all of the models on the corrected dataset due to lack of time. I did train the 3D U-Net for
about 10 epochs, and the train and dev set dice scores appeared to be improving to over 75%.
However, more training and analysis is required to make a definitive conclusion.

Conclusion:

Having a non-faulty data pipeline and accurate data and ground truth labels is very crucial for
successfully evaluating models. In this project, due to the faulty data, the obtained results were
inconclusive about the performance of the models on low quality MRI. However, during a few
epochs of training, the 3D U-Net model appeared to be improving suggesting a positive result.
Given more time, I would validate the generated dataset more carefully and retrain the models on
the corrected dataset. Eventually, in order to make a concreate conclusion, I would also
train/evaluate the model’s on a real dataset of low quality images instead of the simulated dataset.

Acknowledgement:
I would like to thank Dr. Olivier Keunen and Dr. Wintermark’s lab for providing access to
computing resources for training my models.

Bibliography

[1] J.A.B.S.K.-C.J.F.K.K.J.B.Y.P.N.S.J,W.R.L.L.G.EEW.M.A. T.A.B.A.N.B.P.C.D. C.
N.C.J. C. A.D.T. D. H. D. Menze BH, The Multimodal Brain Tumor Image Segmentation
Benchmark (BRATS)..

[2] H.A.A.S.M.B.M.R.J.S.K.J. B.F. K. F. C. D. Spyridon Bakas, Advancing The Cancer
Genome Atlas glioma MRI collections with expert segmentation labels and radiomic
features.

[3] W.L.S.O.T.V. Guotai Wang, Automatic Brain Tumor Segmentation using Cascaded
Anisotropic Convolutional Neural Networks.

[4] 2018 International MICCAI BraTS Challenge Proceedings, 2018.

[5] E.S.T.D.Jonathan Lon, Fully Convolutional Networks for Semantic Segmentation.

[6] S. H.B. H.Hyeonwoo Noh, Learning Deconvolution Network for Semantic Segmentation.

[7] A.G.L M.G.J.".S.DanC. Ciresan, Deep Neural Networks Segment Neuronal Membranes
in Electron Microscopy Images.

[8] P.F.T.B. Olaf Ronneberger, U-Net: Convolutional Networks for Biomedical Image
Segmentation.

[9] A.A.S.S.L.T.B.O.R. Ozgiin Cicek, 3D U-Net: Learning Dense Volumetric Segmentation
from Sparse Annotation.

[10] N. N. S.-A. A. Fausto Milletari, V-Net: Fully Convolutional Neural Networks for Volumetric
Medical Image Segmentation.

[11] L T.F.H.J.C.A.C.A A A.A A T.J.T.Z.W. W. S. Christian Ledig, Photo-Realistic Single
Image Super-Resolution Using a Generative Adversarial Network.

[12] B. B. Dwarikanath Mahapatra, Progressive Generative Adversarial Networks for Medical
Image Super resolution.

[13] H. D. Z. L. G. S. Bingzhe Wu, SRPGAN: Perceptual Generative Adversarial Network for
Single Image Super Resolution.

[14] G. S. N. U. Muhammad Haris, Task-Driven Super Resolution: Object Detection in Low-
resolution Images.

[15] V. V.S. 1.). S. Z. W. Christian Szegedy, Rethinking the Inception Architecture for Computer
Vision.

