CS230

Deep RNNs for Non-Linear State Estimation

Abstract

Estimating the state of a dynamical system from noise-corrupted indirect mea-
surements is a fundamental problem in many applications, such as navigation,
process control, or time series forecasting. This fundamental problem addressed is
by Filtering or State Estimation, which employs techniques such as the Extended
Kalman (EKF) or Particle Filter (PF.) This paper explores applying a Neural Filter,
which is a deep RNN composed of multi-layer LSTM cells as a solution to solving
a benchmark non-linear time-series. In contrast to classical techniques such as the
EKF and PF techniques, a Neural Filter is applicable to cases where no analytic
model of the system is available, and only measured data from experiments is avail-
able. We found that a simple deep RNN architecture is able to produce superior
RMSE performance on this problem, implying that neural filters closely compare
to state-of-the-art filtering techniques.

1 Introduction

This project proposes considering a neural network-based (Neural) Filter as a solution to optimally
estimate any non-linear dynamical system. Limitations of current state-of-the-art estimators, like
the Particle Filter (PF), are not widely recognized but are mentioned in literature. In general, for a
given non-linear system it is difficult to predict which of these estimators will produce the best results.
For example the Extended Kalman Filter (EKF) is widely used but is recognized to have degraded
accuracy or lose stability for certain non-linear problems (Reference 4.) Furthermore, unlike these
traditional techniques, a Neural Filter is applicable to cases where no analytic model of the system
is available, and only measured data from experiments is available. Lastly, since the computational
intensive portion of the Neural Filter is done offline (training), Neural Filters have the potential to
be more computationally efficient in a real-time setting in contrast to a particle filter which is very
computationally expensive in a real-time implementation.

Figure 1: Employing a Recurrent Neural Network as “Neural Filter” to solve the state estimate
problem. Dynamical System Model/ Simulator is employed to generate synthetic data for training
purposes. In contrast to Figure 1 a trained RNN becomes the filter/observer for the system.

Generate Synthetic Data/Simulate Realizations

oise Dynamical Desired Outputs
. System lodel % ST
- ; Simulator weaswred Outpu

Measured Inputs ——»/)
Recurrent Estimate of Desired Outputs
Measured Outputs ——>/ Neural Net
>s Desired Performance a
UuddluT Metric (e.g., MSE) Desired Outputs
Compute Updates to T
Net Weights /

Parameters Updates

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

This project explores training a deep Recurrent Neural Network constructed of stacked LSTM cells (a
Neural Filter) to estimate the mapping from measurements to state estimates. The main assumption
in deep learning is availability of large amounts of data for effective training - this is easily satisfied
since relevant data will be generated by simulation using the dynamical system model. This proposal
will consider a benchmark non-linear dynamical system (proposed in Reference 4), which is a
one-state problem with a bimodal prior. The inputs to the Neural Filter will be the measured inputs
and measured outputs of the dynamical system, and the prediction will be estimates of the desired
output of the dynamical system. Since desired outputs are generated in the simulation process, we
can visualize the performance of the Neural Filter by plotting the filter-produced estimated desired
output against the simulation desired output over the time series of data. Evaluation will be based
on minimization of a desired performance metrics (e.g. mean square error) and compared against
state-of-the-art filters (e.g. particle filters.)

2 Related work

This project builds off of a published comparison analysis titled "The Blind Tricyclist Problem
and a Comparison Study of Nonlinear Filters- A Challenging Benchmark for Evaluation Nonlinear
Estimation Methods" (Reference 4.) This paper considers two challenging non-linear dynamical
system in which traditional approximate techniques can perform poorly. This project focused on the
second of the two benchmarks. For this particular system, the Particle Filter, which is considered
"state-of-the-art" for many filtering problems achieves the lowest error. Yet, the results of this
comparison suggest that no single filtering technique dominates as a sure solution to all non-linear
estimation problems. The solution proposed in this project, a deep recurrent neural network, aims to
be a more widely applicable and consistent solution to challenging non-linear dynamical systems.

3 Dataset and Features

The example considered was a nonlinear time series, outlined in equations 1-3 below, which is widely
used for bench-marking numerical filtering techniques. Model parameters depicted in the equations
below are chosen based on Reference 4 (optimal RMSE ~ 4.68.)

2 = 221 4 95 7L 4 0 8cos(1.2t) + wy 1)
2 Tp—1?
2
I
yo= 2 4o, @
onN(Oa 25)a woNN(Oa 10), UtNN(Ov 1) (3)

The data required to train and validate a neural filter solution can be simulated using the dynamical
system above. Knowing that w,, v¢, z, are all normally distributed random variables, we simulated
the data required to train the network, which is measured outputs (y;) and desired outputs (x;), by
sampling from the normal distribution (using np.random.randn) with the appropriate variance outlined
in the equations above.

For a single time step ¢, the measured outputs (y;) represent our feature vector and the desired outputs
(z¢) represent the label or ground truth at time ¢. This process of constructing measured outputs (y;)
and desired outputs (z;) from sampling of the normal distribution is repeated for the series length
(T'), which represents the length of the time series which will be estimated by the sequence model.

Figure 2: Example data of measured outputs (y;),representing the feature vector, and the desired

outputs (x), representing the label, drawn from the nonlinear time series model with series length of
100.

Desired Output

o 10 ® % w % © 10 0 %

For each epoch during training, a batch of fixed sample size is generated via simulation. Each
observation of a given batch is a series of length 7' of measured outputs (y;), which serve as the
features, and desired outputs (x;), the labels. We selected a nominal length of 7" = 100 time steps
for this analysis. The network is trained on many more observations of the systems than what it
requires for validation. Nominally, training can take 5000 — 25000 epochs to train depending on the
size of the stacked RNN and hyperparameter selection. We validated on approximately 10 epochs of
simulated data, which is supported by the fact the RMSE of the model is fairly stable in the validation
results.

4 Methods

The approach of solving the nonlinear dynamical system involves building a sequence to sequence
model which takes an input time series of length 7" of measured outputs and constructing a sequence
of estimated outputs of equal length T'. As in classical estimation techniques, like the KF, the prior
state of the system is important in the current state’s prediction. Hence, recurrent neural networks are
a natural approach, in particular the Long Term Short Memory (LSTM) cell.

& = tanh(W,[a<*~1>, 2<*>] + b.) 4)
Ty = o(Wyl[a<"1>,2<%>] + b,) 5)
[=o(Wi[a<""1>,2<"] + by) (6)
T, = o(W,[a<*1>,2<%>] + b,) @)
¢St = Ty % 6 4 Tp % c<t71> 8)

a<"> =T, x tanh(c<*>) ©)

The LSTM cell is a way to incorporate long term dependencies and persistence of information over
time into a neural network. Equations 4-9 depict the inner workings of an LSTM cell. The cell
consists of 3 gates: I',,I's, I',. In short, these gates have the ability to add and remove information
to the cell’s state, c<*>. ' governs how much of the prior state is forgotten, while I',, governs how
much we update each state value. Lastly I', controls the output of the cell. A deep RNN consists of
stacking RNN cells, in our case LSTM cells. Figures 3 and 4 depict the how a sequence of stacked
RNN cells constructs a multi-layer network.

Figure 3: Network architecture of stacking RNN cells, in our case LSTM cells, to create a deep RNN
framework. This example depicts a network that consists of a 3-layer stacked RNN for each time
step.

! Current
1 Output
i

i Current
| State3

| Current
i State2
|

| State1

| Current
input

Figure 4: A network of stacked RNN cells estimating a sequence of length 7,. In this analysis 7T}, is
the sequence length 100.

Current Current
Output Output
L atTy 1 atT,
Initial :_> ! Stacked _) ! Current ! ! gnor i_) ! Stacked i—) Cgrrent !
1 ! i RNN T | State | - H tate I RNN : tate |
: State : : Cell - COaT ,E ...for length of series... atT, ,' ' Cell ,: i\ AT, ’:
f Current : u \ Current !

input at | 1 input at |

The loss function chosen was Root Mean Squared Error (RMSE, equation 10.) This is a natural choice
since the problem statement requires estimation of the state vector which is continuously valued. In
our analysis the length of the sequence 7" is 100 and j; is the estimated desired output and y; is the
ground truth desired output. Mean Absolute Error (MAE) was also considered. However, RMSE is
also the metric reported in the literature considered (Reference 4.) The Adam optimization method
was selected for training the model and used the TensorFlow default values for hyperparameters
except for the learning rate (81 = 0.9, 82 = 0.999 and € = 1le — 8.)

T ~ 2
RMSE = Zi:l(? vi) (10)

5 Experiments/Results/Discussion

We predominantly focused on tuning two hyperparameters for this study: learning rate and number
of layers in each stacked LSTM cell cell. Tuning of other hyperparameters (batch size, etc) that were
not explored in this project are discussed briefly in the final section. We first considered cases of a
static learning rate throughout the training period and varied the learning rate from le-2 to le-6 and
varied the number of LSTM cells from 2 to 4. The metric used to assess performance was RMSE.
Since the problem is of the regression variety, RMSE is a natural choice for a metric.

From the results in Table 1, one can see that tuning the learning rate had a greater effect on decreasing
RMSE than increasing the number of layers. The best results occurred with a static learning rate of
le-4 and 3 layers, which resulted in a validation RMSE of 4.74. The transition from 3 layers to 4
did not decrease RMSE for any of the learning rates considered, so larger numbers of layers were

H Learning Rate 2 Layers 3 Layers 4 Layers ”

le-2 12.89/12.97 5.51/5.57 11.55/11.72
le-4 5.15/5.11 4.66/4.74 5.17/5.33
le-6 10.44/10.60 10.50/10.46 10.45/10.35

Table 1: RMSE results for deep LSTM network for static learning rate and variable numbers of
layers. First number represents training RMSE averaged over the last 100 epochs. Second number is
the average RMSE for 10 validation epochs.

not considered. Since the training and testing RMSE are quite close and the training RMSE was not
significantly lower in any cases to the validation RMSE, over fitting did not appear to be a problem.
Based on the loss function behavior overtime, we can observe that the loss functions becomes on
average static, so the more likely scenario is the optimization process stalls in local minima. Thus, it
makes sense consider a learning rate schedule which decreases the learning rate over the duration of
the training period. Although the Adam optimizer itself has an adaptive nature to its optimization
steps, we still chose to enforce and additional learning rate decay protocol.

We additionally considered an exponential learning rate decay with a staircase function, specifically
we chose to to decay the learning rate every 1000 epochs with a base of 0.96. This approach produced
an average RMSE of 4.67 in training average over the last 100 epoch, and an RMSE of 4.64 in 10
epochs of validation. Figure 5 depicts the relationship between Desired Outputs (the data labels,
shown in red) and the Estimated Desired Outputs (output of the RNN, shown in blue), and the
Measured Outputs (inputs to RNN, shown in pink.) By the end of training the RNN estimates the
output signal very closely. The top subplot on the right shows the RMSE for the various steps in the
series length. The 9 subplots below show the trained RNN’s performance on 9 validation epochs.
Over the entire series length the Estimated Tutputs (shown in blue) track closely with the Desired
Outputs (shown in red).

Figure 5: Left: Training Result of 3-layer RNN, where number of epochs = 10000, series length =
100, batch size =10, with an exponential learning rate schedule with staircase step every 1000 epochs
initialized at 1e3 with a base of 0.96. Right: Results of validation of 3-layer RNN on testing data.
Average RMSE for series length is shown in the top graph. Shown below is Measured outputs (Pink),
Desired Outputs (the data labels, shown in red) and the Estimated Desired Outputs (output of the
RNN, shown in blue) for 9 epochs.

Training Validation

°

Cost Function
® B
M
e o B

8

»
N

o B ¥ 8
B8 o

s
K So

-20

D
5
ol o

e

20 30 4“0 s0
Time (seconds L 1 20 » L L

Average RMSE = 4.66 Average RMSE = 4.64

Comparing the results of our neural filter performance to the results published in Reference 4 shown
in Table 2, the neural filter produces a much smaller RMSE than many of the traditional Kalman
filtering techniques. The particle filter performance with a RMSE of 4.68 was the optimal baseline for
this problem. The neural filter performed slightly better than the PF with a validation RMSE of 4.64.

Hence when sufficiently accurate measured outputs of a system are available, a neural filter is an
alternative to other non-linear filtering techniques. Furthermore unlike traditional non-linear methods,
where there is often some level of uncertainty which filter method will produce most optimal results,
a neural filter can be seem as a "universal" non-linear estimator.

Performance metrics for filters
Filter RMSE
Extended Kalman Filter 21.53
Unscented Kalman Filter A 26.97
Particle Filter B 4.68
Neural Filter 4.64

Table 2: RMSE results for various filter techniques. Hyperparameter details for the Kalman and
Particle Filters can be found in Reference 4.

6 Conclusion/Future Work

In summary, the results support the use of a Neural Filter as an alternative to traditional approximate
filtering techniques currently used to solve non-linear state estimation problems. The RMSE produced
by a Neural Filter on the bench mark problem considered was 4.64 as opposed to a RMSE of 4.68
for a Particle Filter solution. We found highest performing network consisted of a stacked LSTM
architecture consisting of 3 layers, with an exponential learning rate decay schedule initialized at
10e-3, and a batch size 10.

Further analysis should include a finer tuning of the learning rate. In addition, a deeper exploration
of options such as alternative stepped decreases or a cosine annealing of the learning rate over the
training process may be beneficial to model performance. It is also worth exploring optimizing the
batch size if more time and resources were invested in the future. In this paper, a static batch size
of 10 was used. Similarly, tuning the additional hyperparmeters used in Adam, such as (31, 32 or e,
could improve model performance. Lastly, the approach chosen selected using stacked LSTM cells.
An alternative approach which could be useful to consider in future work would be to employ stacked
Gradient Recurrent Units (GRUs) instead of LSTMs. GRUs are less complex; they only contain a
single gate, while the LSTM consists of three gates. Hence, a model consisting of GRUs will have
fewer learn-able parameters and may be less intensive to train than one consisting of LSTMs.

7 Contributions

This project was completed by Catherine Watkins. Special thanks to my group’s chief scientist at JHU
APL, Ruchir Saheba for your wisdom and inspiration in all things estimation theory and controls.

References

[1] James T. Lo (1994), “Synthetic Approach to Optimal Filtering”, IEEE Transactions on Neural Networks, Vol.
5, No. 5.

[2] Zachary C. Lipton, John Berkowitz, Charles Elkan (2015), “A Critical Review of Recurrent Neural Networks
for Sequence Learning”, arXiv.org

[3] Cappe et. al. (2007), “An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo”,
Proceedings of the IEEE, Vol. 95, No. 5.

[4] M. L. Psiaki (2013), "The blind tricyclist problem and a comparative study of nonlinear filters: A challenging
benchmark for evaluating nonlinear estimation methods," IEEE Control Systems Magazine, Vol. 33, No. 3.

[5] Ristic et. al. (2004), “Beyond the Kalman Filter. Particle Filters for Tracking Applications”, Artech House.

[6] "TensorFlow", tensorflow.org.

