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Abstract

This project tackles the problem of converting pencil sketches to photorealistic images. Previous
work has focused on using traditional CNNs with reasonable results, but we used the newer
CycleGAN architecture to fully utilize a dataset of unpaired sketches and faces. With the CycleGAN
architecture, we experimented with different CNN architectures for the generators and discriminators.
With a generator initially implemented in the related "Pix2Pix" Conditional GAN architecture, our
system was able to output relatively convincing color schemes for photorealistic images given
black-and-white sketches.

Code Repositories We Used:

Cycle GAN: https://github.com/jerryMeng100/CycleGAN-TensorFlow

Data, Neural Style Transfer, Pix2Pix: https://github.com/jerryMeng100/sketch2face
Mask-RCNN-Shiny: https://github.com/huuuuusy/Mask-RCNN-Shiny

1 Introduction

In both police TV dramas and real world criminal cases, law enforcement often only possesses witness description-based
sketches to guide their search for potentially harmful individuals. This, among other interesting applications, motivated
us to create a deep learning framework for our CS230 project that will reverse engineer photorealistic images from even
rudimentary facial sketches. This sort of application has already been tried before in 2016 using basic CNNs, with some
success. However, we plan to employ a novel Cycle-consistent Generative Adversarial Network (CycleGAN) technique
in the hope that the adversarial nature of the GAN will generate even more realistic photos. By using the CycleGAN
architecture, our model will be able to learn sketch-to-photo transformations (and vice versa) without requiring paired
sketches and photos.

2 Data

We used two main datasets to train our models:

Image-sketch pairs to run the neural style transfer baseline were sampled from the CUHK Face Sketch Database (CUFES).
We also employed this paired dataset to train our initial Pix2Pix explorations and power the sketch data in our CycleGAN.

We used the NVIDIA FFHQ faces dataset, containing 70,000 photorealistic faces (we used a smaller, 1,800
item dataset to avoid the data quantity asymmetry compared to the amount of sketch data), as our photos database for
the CycleGAN implementations. (https://github.com/NVlabs/ffhq-dataset).



3 Methods

3.1 Architectures & Project Pipeline:

The bulk of our project came in the form of choosing and tuning the neural network architecture we would employ
to tackle our problem. We began with a paired photo-sketch Neural Style Transfer network as a baseline, which
indeed struggled to color sketches’ faces with consistent skin tones. From there, we moved into the world of GANs by
employing a Conditional GAN (a.k.a. Pix2Pix), again with paired photo-sketch data, which was able to very effectively
translate paired sketches to images. However, with only a data set of about 100 paired photo-sketches available for
this model, all from the same artist, we determined the model overfit the data and had no capability of generalizing to
diverse new sketches.

To solve this data scarcity problem, we settled on our final GAN
model: CycleGAN. To elaborate, CycleGANs differ from traditional
GAN architectures in that they process two unpaired categories of
data, X and Y, and for each category, has a generator which tries to
map X to Y or vice versa, with a corresponding discriminator for
each direction that attempts to determine if the output is "real." Cycle-
GAN’s unique point is that it has a cycle-consistency loss (described
in Zhu et al) that would allow us to train a model without the need for
paired sketches and photos, dramatically expanding and diversifying
the frontier of our dataset.

We started with a TensorFlow implementation of a CycleGAN by
vanhuyz on Github. The generator architecture is shown in Figure
2 below, and is based on a set of convolutions, a set of residual
convolutions, and a set of deconvolutions to map an input image
to an output image of the same dimension. However, inspired by Figure 1: Pix2Pix Generator Architecture
how effectively Pix2Pix could perform on paired data, we wondered

if replacing this generator structure with the Pix2Pix architecture

could improve performance. This generator architecture is shown below in Figure 1 above, and is based on a set of
convolutions followed by deconvolutions, but with residual skips across each of the layers of equal size:

After implementing these architectures, we found that both struggled

with what we called "coloring fragmentation." Essentially, because

the sketches’ backgrounds often had leftover graphite/charcoal |
that resembled the color of the subject’s skin tone, both models
"learned" to place skin-like color all over the background. We
solved this by transforming our project into a pipeline that first
employed a Mask-RCNN network to crop out the photos’ and
sketches’ subjects (i.e. remove the background) and surround
them with a plain color background. We experimented with both o
"green screen" and white backgrounds in this regard, finding that
the white backgrounds yielded solid performance while green
backgrounds caused "image negative errors" regularly (described
below).

Deconvolution Layers

Residual Layers (x4)

Figure 2: CycleGAN Generator Architecture

Additionally, we tried experimenting with different types of PatchGAN discriminator architectures. The
most important thing we experimented with was the receptor field size. We tried out 1x1, 16x16, and 70x70 fields,
ultimately settling with the 70x70 PatchGAN as it produced the most defined outputs. The 1x1 provided little spatial
information and the 16x16 gave detailed images but ran into the issue of containing some tiling artifacts. This was
largely alleviated by the 70x70 PatchGAN.

3.2 Applying CycleGAN

As mentioned above, our CycleGAN is powered two generator nets, one to map sketches to photos and one to map
photos to sketches, and two discriminators, one to discern "real" sketches and one to discern "real" photos. At each
"step" in the training process, one sketch and one photo (unpaired) are inputted to each generator. The discriminators
then determine if their outputs are "real" to determine loss. In addition, the dual generator takes the first generator’s
input and attempts to reconstruct the original inputs as another determiner of loss. Gradients are then computed and
parameters updated. This simplified structure is illustrated in Figure 3.



The CycleGAN’s various neural networks’ parameters are updated with the Cycle-Consistency Loss function, on which
more details can be found in the original CycleGAN paper:

J = J(Dl) —|—J(G1) —|—J(D2) +J(G2) +Achcle

3.3 Hyperparameters and Training the Model

Before finally training our models, we performed a few
small test runs for hyperparameter tuning. We primarily
tweaked the hyperparameters A; and A5, which controlled
the weights of the cycle consistency loss. The \’s were
coefficients that would be multiplied by the cycle-loss
from X->Y->X versus Y->X->Y. We found that when
A2 = 2% A1, the system performed poorly, but when
A1 = 2 % \g, the system did quite well in learning the
color of features on the face.

From there, we ran both networks for as many steps (i.e.
input of 1 unpaired sketch and photo into the Cycle GAN)
as possible until we noticed performance was no longer
improving. This resulted in 70,000 steps for the conven-
tional CycleGAN and 30,000 steps for the Pix2Pix Archi-
tecture revision. One curious finding is that, despite the
similarly-sized generator architectures, the Pix2Pix gen-
erator version trained roughly 50% more quickly, which
we suspect owes itself to the greater number of residual
skips in that architecture.

4 Results

We ran the default generator CycleGAN for 70,000 steps
and tracked the outputs of both the "sketch2face" and
"face2sketch" directions. We can compare this with with
our Pix2Pix generator architecture version, which we ran
for about 30,000 steps. Figure 4 contains a sample of
the sketch2face direction of these models, with the top
from the default generator version and the bottom from
the Pix2Pix generator version. Left to right: input sketch,
generated photo from input sketch, reconstructed sketch
from generated photo.

Both show some cases of background color artifacts,
which we suspect resulted from some leftover background
that the RCNN neural net did not crop out during our data
pre-processing. In both cases, the architectures learns
to color faces with reasonable skin shading and even
clothes/accessories coloring, though each architecture
tended to yield slightly differing facial hues as shown
(and across many more examples).

4.1 Error Analysis

One of the main sources of training trouble was a color
inversion between the input and the generated, shown in
Figure 5:

This typically resulted when the training hyperparameters
were ill-set and is analogous to becoming trapped in the
Cycle-Consistent loss’s local minima.
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Photo2Sketch

Figure 3: CycleGAN Overall Structure
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Figure 4: CycleGAN Step Examples (Top: Default Generator
Architecture, Bottom: Pix2Pix Generator Architecture)



More precisely, the inversion results in an undesirable

transformation G from the input to the generated im- ... e R oo
age, but where the other generator F' learns to undo the P
undesirable transformation. This occurred sporadically,
and we largely didn’t have these cases with better hy-
perparameters. Another step to take to avoid this is to
alternatively freeze generators as in Harley et al, but we
did not prioritize this upgrade over changing architectures
or hyperparameters.

In addition to the color inversion, we encountered back- Figure 5: Color Inversion

ground colors that seeped into the face color many times,

which persisted somewhat even in the final result. We suspect this stemmed from both residual backgrounds in the
input photos, as well as the GAN struggling to differentiate when facial makeup/accessories should be translated to the
generated photo from a base sketch. This is shown in Figure 6:

We got around this by using a CNN which did segmen-
tation to separate the face from the background, then fill
all background with white. The main results we have are
after this process which largely solved this problem.
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5 Discussion

Our final CycleGAN enabled us to transfer the facial
features from low resolution sketches while maintaining
the input image constraints. The generated sketches and
images are robust across a wide variety of face structures,
hairstyles, and skin tones, and we believe satisfy our
project goal of achieving these transformations. In gen-
eral, the Pix2Pix Generator CycleGAN yielded "duller"
(but arguably more realistic) skin and hair tones, but often
produced quite a bit of background fragmentation. In contrast, the CycleGAN model trained more slowly, but produced
lusher hair and skin tones. However, this model avoided background fragmentation more consistently than Pix2pix as
can be seen in the figure above. We suspect this core color difference owes itself to the residual skips across the entirety
of the Pix2Pix generator version’s network, allowing it to learn the identity of desired colors early and not over-train to
yield less realistic coloration.

Figure 6: Background Fragmentation

While we primarily focused on qualitative image quality,
we also calculated quantitative metrics for both of our
models. One of which is the "inception score,” which
gives a metric to measure a combination of a GAN’s
generated image quality and image diversity, given by the
following equation:

IS(G) = eBers (KL lp(v))]

We found no significant difference between the two mod-
els’ sketch2face generators’ inception scores despite the

still discernible trends with the generated faces. In addi- Input Pix2Pix Gen Default

tion, the Pix2Pix generator model trained more quickly

on a step-by-step basis, and only required half the steps Model Tnception Score Mean _ Std. Dev.
of the default CycleGAN to achieve comparable perfor- Pix2pix Gen 162 iOS :
mance to that model. Once again, we suspect the gen- CycleGAN Gen. 1.60 223

erator’s residual skips yielded both of these differences
for the Pix2Pix generator version, as the convolutions/de-
convolutions are of relatively similar sizes and natures in Figure 7: Model Inference Results
both generator architectures.



5.1 Future Steps

Our current methods can achieve reasonable results on most cases. In sketch to image translation tasks, our model very
often succeeded in transfer in the skin tones and facial textures. A future area we would like to pursue is tasks that
involve geometric changes to the input, such as generating the maternal or paternal face of the image image. This would
require the ability to map to opposite gender counterparts and the ability to distinguish would features should transfer
over. We would also like to look into super-resolutions GANs in order to sharpen our generated images.

Although we trained both CycleGAN models for many tens of thousands of steps, other CycleGAN papers have trained
networks for over 600,000 steps; as such, letting the algorithm run for longer could yield some more realistic results or
prune out undesirable artifacts.

In addition, we might explore adding more robustness to the input sketches. Currently, the sketches are generally rather
detailed without verging into complete artistic photorealism, and so we are interested in mixing in both more basic and
advanced sketches from various artists to generate a stronger model.

One more interesting project add-on we thought of is in combining super-resolution GANS to sharpen the generated
images. Used in either an intermediate step or post-processing, we believe this addition to our project pipeline could
greatly enhance the photorealism of our image outputs.

To sharpen our current project, we pondered removing photos that contain makeup or facial accessories from our
training set, or appending sketches with these features to our sketch dataset. Both architectures tended to learn colors
such as blue and pink around the eyes. Pictures with accessories performed slightly better because they come in a
variety of shapes while makeup misled the model. Furthermore, our model should produce images of faces without
makeup since the input sketches do not include makeup.

6 Team Contributions and What Code We Wrote:

Jerry: I proposed using CycleGANSs as a new method to investigate the problem of sketch to photo, after seeing a
paper using CNNs for the same purpose. I researched to find the photos dataset and built scripts to make data uniform
and split the data. I experimented with CycleGAN implementations and hyperparameters early on, and worked to use a
CNN to resegment our data so that the background in the photos did not interfere with the learning. For the report, I
focused on the results and error analysis section.

Connor: I primarily focused on investigating the Pix2Pix architecture initially, and so most of my personal coding
entailed implementing the Pix2Pix generator architecture into the CycleGAN system. I also ran many of the different
model runs that ultimately lead to our final model, such as testing green backgrounds vs. white backgrounds on the
CycleGAN and Pix2Pix generator architectures. For the final report and poster, I primarily focused on the "Methods"
sections and created many of the handmade visuals found in this report and on the poster, but also made large
contributions across most sections.

Danny: I developed the Neural Style Transfer baseline initially. I then transitioned to researching and implementing
various PatchGAN discriminator architectures for both Pix2Pix and CycleGAN. Discriminators of several varying
receptor field sizes were tested. I also wrote up the parts pertaining to these, the discussion section, and much of the
poster.
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