LANDMARK RECOGNITION
Large-scale Classification on Noisy Imbalanced Dataset

Renke Cai
CS231N, Stanford University

Renke.cai@stanford.edu

Abstract

Landmark recognition is a large-scale image classification
problem on imbalanced datasets. This paper discusses a
transfer learning approach to training the classifier using
CNN architectures such as VGG16 and Xception that are
pre-trained on ImageNet, as well as a few practical aspects
including data augmentation, model fine-tuning as well as
their impact on the performance of the classifier. Some
data/model visualization and qualitative analysis are also
conducted in order to better explain the model prediction
performance.

1. Introduction

The landmark recognition problem comes from a Kaggle
Challenge launched by Google Inc. in April, 2019. The goal
is to build models that recognize the correct landmark (if
any) in a large-scale dataset of images.

This problem of extreme classification is prevalent in the
data science community today with the advancement of
deep learning. The dataset for this challenge is provided by
Google and the Dataset is with 5 million images depicting
human-made and natural landmarks spanning 200 thousand
classes. Dealing with large-scale dataset but also a large
number of classes with very few images in many classes is
particularly challenging. And in terms of computational
resources, increasing image resolutions may significantly
increases the training time therefore there will have to be a
tradeoff.

The input data are raw landmark pictures. We
experimented with VGG16 and Xception initialized with
weights trained on ImageNet with our customized top
layers attached in order to predict a label for each image,
followed by which are various experiments and analysis of
the results. We also designed a voting mechanism at the
stage of inference by doing cropping and prediction for
each of the test image and came up with a heuristic
confidence score associated with each predicted class label.

2. Related Work

Our work is concerned mainly the deep learning
architecture, as it is advancing a number of pattern
recognition and machine learning areas and deep

Chenjiao Wang
CS230, Stanford University

Chenjiao.wang@stanford.edu

convolutional neural networks (CNNs) could always have a
noticeable performance in the computer vision problems.
As our task is associated with large scale data set process,
the deep CNN is a good choice to tackle the task.

We choose to use VGG16[1] by Karen el at’s as our
starting point for this deep learning project as it is very
powerful model and useful as image classifier and as the
basis for new models that use image inputs. It increasing
depth using an architecture with very small (3*3)
convolution filters by pushing to depth to 16 weight layers.

Xception[11] also have been used as our base model as it
is a relatively new model by Francois and it outperformed
Inceptions V3 on a larger image data classification dataset
by replacing the standard inception modules with
depth-wise separable convolutions. And the weights
serialization are smallest compared to the other classic
models VGGs and ResNet50.

Transfer learning allows us to train deep networks using
significantly less data/time than we would need if we had to
train from scratch. With transfer learning, we are in effect
transferring the “knowledge” that a model has learned from
a previous dataset, to our current one. The idea is we can
leverage whatever network parameters that model has
learned through its extensive training, without having to do
that training ourselves. As Transfer learning has been
consistently proven to boost model accuracy and reduce
require training time, we will use transfer learning through
out the project.

3. Dataset and Features

The dataset was constructed by clustering images based
on geo-locations. The original training dataset (over 500
GB) contains 4,132,914 images of 203,094 famous as well
as not so famous landmarks all over the world. The
numbers of images varies high from classes to classes.
Maximum images in a class are 10247 while a number of
other classes contain only 1 picture. Figure 1 plots the
number of samples for the most frequent and least frequent
labels. This imbalanced dataset will require a more careful
data augmentation technique.

In the time of interest, we filtered out 6,401 classes
which consist of 1,243,915 images in total for our training.
However, even on such a subset of universe, the training set

is still quite noisy. Figure 2 are the images that share the
label with the most observations. This does not contain any
landmark information.

Figure 1 Sample counts of most/least frequent classes

Such images of plants do exist everywhere in many

different labels and may confuse the training to some extent.

And this top class label takes a significant portion of all the
training samples.

Figure 2 Samples from the most frequent landmark

Due to the above nature of our dataset, though the
essence of this problem is image classification, it differs
from classical classification problem (like ImageNet
Challenge) in several perspectives:

* Landmarks do not only have transition and rotation
invariance like objects, but also could be totally different in
each picture — indoor scene, outdoor landscape, or even just
a piece of statue in a person’s selfie, etc.;

o There is a lot of noise in the dataset — some pictures
are labeled by a landmark but it actually cannot represent
anything, and this data may significantly affect the training
(see data preprocessing section for details);

e The large number of classes results in many
similar-looking landmarks which actually belong to
different classes. This adds to the complexity of the
problem as human beings may not tell the difference as
well.

* As the data is being highly imbalanced, various image
augmentation techniques need to be used to minimize
difference in the number of image per class.

All of these special characteristics indicate that a more
delicate design of data augmentation as well as training and
fine tuning process needs to be done.

4. Methods

We trained two classifiers based on the well-known
CNN architectures — VGG16 and Xception, as described in
the related work, along with our customized top-layer
models.

4.1. Baseline: VGG16

VGG16 architecture is characterized by its simplicity,
using only 3%3 convolutional layers stacked on top of each
other in increasing depth, which is an improvement over
AlexNet that uses kernel of sizes 11 and 5 in its first two
convolutional layers. Reducing volume size is then handled
by max pooling.

VGG-16 Model Architecture

customized top model >

/

maxpool

Figure 3 VGG16 Model Architecture

Picture Source: towardsdatascience.com

maxpool | maxpool | maxpool

We used a relatively small top-layer model including
two fully-connected layers with dropout and regularization
added as well. To predict the final class label we used a
softmax layer that has dimension equal to the number of our
selected classes.

XYW"

Zk 1"xTw‘
The loss function we used in our first experiment is the
categorical cross entropy loss

L= —z ¥, log(S(/f (x,)))

4.2. Xception

Xception stands for extreme Inception. An Inception
module computes multiple different transformations over
the same input map in parallel, concatenating their results
into a single output, using 1x1 convolutions to perform
dimensionality reduction. Xception takes this one step
further. Instead of partitioning input data into several
compressed chunks, it maps the spatial correlations for
each output channel separately, and then performs a 1x1

depth-wise convolution to capture cross-channel
correlation.
Depthwise Convolution
| W
Pointwise Convolution - S %
'

Figure 4 Modified Inception Module in Xception

Picture Source: towardsdatascience.com

Our top model consists of 3 layers: generalized average

pool layer replacing full-connected layer, a dropout layer
and an output layer (Softmax).

The generalized average pool layer is utilized to reduce
the spatial dimension of a three dimensional tensor while
extract the features from the base Xception model. It also
helps to flatten the data and minimize over-fitting by
reducing the total number of parameters in the model. To
further avoid over-fitting, we add another dropout layers
scale down the neurons. Adding another dense layer was
tried but did not improve the performance while led to
quicker over-fitting instead, therefore not used in the final
architecture. This means our model only uses the minimum
number of parameters, since we do not any parameterized
layers besides the output layer.

We still use the most common categorical cross entropy
loss for the optimization. In addition, we calculate the
Global Average Precision (GAP) as an auxiliary evaluation
metric. For N predictions, the Global Average Precision is
computed as:

N
1
GAP o Z[P(i)rel(i)

where:

e M is the total number of queries with at least one
landmark from the training set visible in it (note that
some queries may not depict landmarks)

e P(i) is the precision at rank i;

e rel(i) denotes the relevance of prediction i: it’s 1 if the
i-th prediction is correct, and 0 otherwise.

5. Experiments and Results

The 1,243,915 training images dataset is split into 70%
for training, 20% for hold-out validation and 10% for
testing. The split is performed per class label, ensuring the
same distribution across the three sets.

5.1. Data augmentation

Various standard image augmentation techniques such as
flip, crop, scale, rotation, translation are used as real-time
data augmentation process when the training the images
on-the-fly.

Beyond that, we customized an image cropping function
that crop the original image into resolution of 150 * 150.
Note that the original image we prepared are of width 256
while height is set so that original scale is preserved. This
function takes in three parameters:

e Cropping probability: the probability of whether to
perform image cropping or not;

e Image resizing scale: resizing the original image into
this size before cropping

e Way of random cropping: cropping from the center or
corners or edges.

The Python Code of the data cropping and training data

generator (that basically implements the Keras
ImageDataGenerator API) as well as a few other helper
functions are inspired by and adapted from Jan Daldrop ‘s
Github: hitps./github.com/jandaldrop/landmark-recognition-challenge/

Figure 5 illustration of image cropping
This cropping method is useful from two perspectives:
first it helps avoid overfitting especially for classes where
the number of sample images is small; secondly, each
cropping will carry additional information from epoch to

epoch since the original image has a higher resolution than
target (150*150).

5.2. Transfer learning and VGG16 training

As a baseline method we trained the VGG16 classifier
based on weights pre-trained on ImageNet.

First we examined that pre-trained VGG16 does predict
meaning patterns using inputs from our landmark dataset.
The top three predictions for the sample image (Figure 6)
are: beacon, stupa and barn. They are reasonable
predictions, indicating that the general features have been
learned by the neural networks.

0 50 100 150 200 250

Figure 6 Landmark used to generate features from ImageNet

Therefore we decided to continue with the transfer
learning approach. We then froze all the convolutional part
of the model (from input layer all the way to before
fully-connected layers) and trained for 30 epochs.

Table 1 Hyper parameters of VGG16 training
Base Model Name VGG16

Top-layer Model FC (dim=256, Relu) — FC (dim=256,
Relu) — output(softmax)

Frozen Layers All convolutional layers

Learning Rate 0.0001

Optimizer Adam

Loss function Categorical Cross Entropy

The result is not promising. As a second stage, the top
convolutional layers was then set to trainable as well, but
that did not bring any improvement.

Table 2 Results of baseline (VGG16) training

Accuracy GAP
Training set 0.045 0.0053
Validation set 0.053 0.0067

5.3. Xception training and fine-tuning

Our Xception architecture was trained by three stages
with changing hyper parameters. Please note that since we
did not have resources to grid search the hyper parameters,
they were set in the following way because they either gave
impressive results on toy dataset, or were
empirical/intuitive enough (hopefully) for direct use.

5.3.1

First we froze the bottom 80 layers (Note: This number
follows the model implementation of Keras, and is the
detailed layer info instead of the general number of conv
layers in most architecture flow charts) and train using the
following hyper parameters for 20 epochs:

Top model + a few convolutional layers training

Table 3 Hyper Parameters of Xception training -- stage 1
Base Model Name ~ Xception

Top-layer Model Generalized mean pool - dropout —
output(softmax)

Frozen Layers Bottom 80 conv layers

Learning Rate 0.0001

Optimizer Adam

Loss function Categorical Cross Entropy

Cropping 0.1 to 0.5 linear increasing by epoch

probability

Resizing scale Resizing to 180*180 before cropping

Way of cropping Random center position

The following plot (Figure 7) displays the training and
validation set accuracy for each epoch during training. We
can see a significantly improvement when coming to the
second stage. Since the validation accuracy became
saturated after a few epochs in this stage, we stopped our
training accordingly.

o7

o6

os

loss

o4

o3
stage 2|

o2

o1

[s 10 1s 20 2s
epoch

Figure 7 Training Accuracy Logs

5.3.2 More convolutional layers fine tuning with lower
learning rate

Another 4 epochs were trained with more layers allowed
for training and lower learning rates as well as higher image

cropping probability.

Table 4 Hyper Parameters for Xception training -- stage 2
Base Model Name Xception

Top-layer Model Generalized mean pool - dropout —
output(softmax)

Frozen Layers Bottom 20 conv layers

Learning Rate 0.00001

Optimizer Adam

Loss function Categorical Cross Entropy

Cropping 0.5 to 0.8 linear increasing by epoch

probability

Resizing scale Resizing to 200*200 before cropping

Way of cropping Random center position

5.3.3 Prediction through voting

Since we do not have resource to build up ensemble
learning by having different model trained, we designed a
voting mechanism using image cropping at test time.

We cropped the images 10 times and use majority win
among the predicted labels as our final prediction. This
yields better performance on hold-out set.The confidence
score is then based on the weighted average probability of
the majority label (i.e. the final prediction).

5.3.4 Final results (Xception model with best validation
set accuracy)

The following table 5 summarizes the quantitative
performance of the best Xception model trained. Please
note that the GAP for training and validation set are not
listed here to avoid confusion, since we calculated it batch
by batch (each batch size is 64), which are not comparable
with that calculated on test set.

Table 5 model performance
Accuracy GAP

Training set 0.7496 --
Validation set 0.5111 --

Test set 0.5159 0.4709

Test set with voting mechanism 0.5389 0.5964

5.4. Qualitative analysis

The model prediction accuracy is roughly centered
around 50% with a shape of Normal distribution. It does not
have significant correlation to the number of samples in the
class.

Frequency

Figure 8 All classes’ prediction accuracy histogram
This generally concludes that our trained classifier is
doing a superb job (at least for this randomly-selected
label).

5.4.1 Sample Class with 0 accuracy
This is fairly reasonable as the pictures do not even
depict a landmark (noisy data)

Figure 9 Sample images with 0 classification accuracy

5.4.2 Sample Class with 50% accuracy

There is an important observation from the correctly
classified images -- the model is able to recognize indoor
scene and outdoor landmark shape as the same class, which
is a different problem nature compared with traditional
image classification problem.

?\ - — = 4

Figure 10 Correctly-classified sample iméges with 50%
classification accuracy for this label

The misclassified images again do not depict any

le}ndmark.)))

Figure 11 Misclassified sample images with 50% classification
accuracy for this label
This generally concludes that our trained classifier is
doing a superb job (at least for this randomly-selected
label).

5.5. Saliency Map

As saliency refers to unique features (pixels, resolution
etc.) of the image in the context of visual processing, these
unique features depict the visually alluring locations in an
image[13]. We want to compute the gradient of output
category with respect to input image to represent the
saliency at every location in the visual field by a scalar
quantity and to guide the selection of attended locations
based on the spatial distribution of saliency.

doutput
dinput

This tell us how the output value changes with respect to
a small change in inputs. For a better visualization, we
employed the method of guided saliency. In guided
saliency, the backpropagation step is modified to only
propagate positive gradients for positive activations[15].
The Saliency map generated from our trained model
indicates that our classifier is looking at the shape of the
construction (especially the unique parts) as well as the
surrounding environments (slightly).

50 100 150 200

Figure 12 Saliency Map for two sample landmark images

6. Conclusion and future work

The quantitative and qualitative analysis of our trained
model indicates a satisfactory performance on the 6k+
classes of landmarks. Data augmentation especially image
cropping played a significant role in improving the
accuracy. Also cropping at test time and use the majority
win method gives better prediction accuracy, though it is
heuristic.

However, once the problem is expanded to the original
dataset with 200K+labels, it could be way more difficult to
train a classifier using a pure deep learning architecture.
Some hybrid method includes unsupervised learning such
as KNN could be powerful. For example, we could try find
the k nearest neighbors for a given test image based on the
features from one bottleneck layer of some CNN
architectures.

Some interesting method was not attempted yet due to
the time constraint of this project. For example, a local
feature descriptor for large-scale image retrieval called
DeLF could be useful for this particular challenge. It
extracts local features from images and matches them. We
used it for matching local features of test images to images
known to be landmarks. DeLF architecture is such that it
selects the features with the highest score and then the
query image is passed through and its features are matched
with those of the database images after geometric
verification. The matching of features is done through
Ransac (Random Sample Consensus) and the number of
inliers is used to make a decision. In order to tackle the
no-landmark images in the Kaggle private test dataset, we
can tune the threshold of the number of such inliers.

7. Contributions & Acknowledgements

Both members of the team were making significant
contribution into this project including research, data
downloading, cloud environment setup and report write-up.

Chenjiao Wang collected and researched related
information, pre-processed the datasets, analyzed and
visualized the data, built a pilot run pipeline, and conducted
experiments by training baseline model with different
hyperparameters, and also contributed to the improvement
of the architecture, the model training supervision and the
resource planning.

Renke Cai designed the main project pipeline, developed
the major code base and training architecture for the
Xception model using GPU and multi-threading,
experimented different top-layer models, data
augmentation mechanism, and prediction rules. He also
conducted both the quantitative and qualitative analysis
including the saliency map visualization and sample results
analysis.

References

[17 K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In ICLR, 2015.

[2] C. McNabb, Et al.
https://towardsdatascience.com/google-landmark-recognitio
n-using-transfer-learning-dde35cc760e1

[3] Pedro Marcelino.
https://towardsdatascience.com/transfer-learning-from-pre-t
rained-models-f2393f124751

[4] Felix Yu.
https:/flyyufelix.github.i0/2016/10/03/fine-tuning-in-keras-
partl.html

[5] Yunpeng Li, D. J. Crandall and D. P. Huttenlocher,
"Landmark classification in large-scale image collections,"
2009 IEEE 12th International Conference on Computer
Vision, Kyoto, 2009, pp. 1957-1964.

[6] Y. Zheng, M. Zhao, Y. Song, H. Adam, U. Buddemeier, A.
Bissacco, F. Brucher, T. Chua, and H. Neven. Proceedings of
International Conference on Computer Vision and Pattern
Recognition, Miami, Florida, U.S.A, (June, 2009)

[77 O. M. Parkhi, A. Vedaldi, A. Zisserman, Deep face
recognition, in: Proc. British Machine Vision Conference,
Vol. 1, Swansea, UK, 2015, pp. 1-12.

[8] C.Luand X. Tang. Surpassing human-level face verification
performance on Ifw with gaussianface. AAAI, 2015.

[91 R. G. Cinbis, J. J. Verbeek, and C. Schmid. Unsupervised
metric learning for face identification in TV video. In Proc.
ICCV, pages 1559-1566, 2011.

[10] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In ICLR, 2015

[11] Francois Chollet. Xception: Deep learning with depthwise
separable convolutions. arXivpreprint arXiv:1610.02357,
2016.

[12] Y. Zhu, X. Deng, and S. Newsam. 2018. Fine-Grained Land
Use Classification at the City Scale Using Ground-Level
Images. ArXiv e-prints (Feb. 2018).
arXiv:cs.CV/1802.02668

[13] L. Itti, C. Koch, and E. Niebur. A model of saliency-based
visual attention for rapid scene analysis. I[EEE Patt. Anal.
Mach. Intell., 20(11):1254-1259, November 1998.

[14] HC Shin, Et al. Deep convolutional neural networks for
computer-aided detection: CNN architectures, dataset
characteristics and transfer learning, IEEE 2016.

[15] Springenberg, Et al. STRIVING FOR SIMPLICITY: THE
ALL CONVOLUTIONAL NET, ICLR 2015.

