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Abstract

Financial markets are inherently unpredictable. There has nevertheless been signif-
icant research into modeling these systems with deep neural networks. Attention
mechanisms offer a way to improve these networks by conditioning outputs on the
information most relevant to a specific input. We use the Simple Neural Attentive
Meta-Learner model to predict stock returns from both technical and fundamental
data on 7000 publicly traded US stocks over a 10 year window. We show that
the stock market forecasting problem can be modeled as a meta-learning problem
across different assets, and achieve significant above-market returns on an 8-month
held-out testing window using a model that incorporates this causal attention
mechanism.

1 Introduction

Countless statistical models have been developed for predicting and trading in financial markets.
Many use purely technical indicators based on pricing, trade volume, and volatility information. Many
are based on companies’ underlying financial strength in the form of quarterly income statements.
We combine both of these approaches, and use state-of-the-art attention mechanisms embedded in a
deep neural network architecture to learn functions that prioritize the most relevant information in
each prediction. By representing our problem as meta-learning where each assets represents a distinct
but related learning problem, we are able to generalize very well to unseen data.

We take as input 20 days of price and broader market information as well as 8 quarters of income
statements for a given asset, and output a recommendation to enter either a long or short position on
that asset. We are able to evaluate the strength of our model by backtesting it on real sequences of
stock prices and comparing the model’s return to that of the entire market over the same time period.
This metric of "beating the market" signifies whether a model is viable for real-world use.

2 Related Work

Learning-based financial modeling. There have been many learning-based approaches to financial
modeling and algorithmic trading. Deng et. al., (2017) use a deep RL model for real-time trading.
[3] They show that it is possible to generate a tradable signal from a learned function on financial
data. We choose not to use a reinforcement learning approach because, while we implement a simple
trading algorithm for backtesting purposes, the input to our model at time ¢ does not depend on our
trading decision at time ¢ — 1.

The majority of approaches in this domain focus on technical indicators and sentiment information, as
in Vargas et. al., (2017), and on short-term time horizons — either daily or intraday. [11] By leveraging
quarterly financial reporting and looking at longer time intervals, our model attempts to learn signals
created by companies’ underlying strengths and weaknesses rather than purely technical ones.
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Attention and meta-learning. The Simple Neural Attentive Meta-Learner, introduced by Mishra
et. al. in 2017, combines temporal convolutions with causal attention to generalize learning across
related tasks. [8][12] This is of interest because our problem can be thought of as learning a slightly
different function on each asset in our dataset; given identical market conditions and previous price
movement, different assets will perform differently based on a multitude of factors such as the sector
to which the assets belong and the size of the companies. SNAIL has been successfully applied
to both reinforcement and supervised learning; here we focus on the supervised version. Attentive
Neural Processes (Kim et. al. (2019)) are a form of neural process (Garnelo et. al. (2018)) that
incorporate attention mechanisms. We experimented with ANPs in our model but achieved better
results with SNAIL. [6][4]

3 Dataset

Source. We source our data from Quandl’s Sharadar Core US Equities and Fund Price datasets.
These provide daily closing price, price/earnings, price/book, and price/sales ratios as well as trade
volume and quarterly financials for roughly 7000 publicly traded US stocks over the past 10 years
(since August 2009).

Structure. Each example x(*) consists of a pair of inputs (x,Ei)7 ng)). x{" € R29%23 represents the
price and trade volume of a specific stock as well as those of certain market indices over the last 20
trading days. ng) € R®*210 represents 210 features of the company’s reported financials (e.g., cash
flow, debt, assets, tax liabilities) over the last 8 quarters.

Augmentation and Preprocessing. We only have one data point per roughly 90 days per stock for
all of the fundamental features, so we augment our data by propagating these features forward until
the next quarter (i.e., x*) will share quarterly features with x(**7) provided that j < k, where k
is the number of trading days in a quarter). After removing non-numerical features and removing
examples for stocks with fewer than 20 data points, we end up with 995287 total examples.

Training/validation/test split. Our training set consists of 957527 examples corresponding to dates
between 1 August 2009 and 1 July 2018. The validation and test sets consists of 37760 examples
corresponding to dates between 1 July 2018 and 11 March 2019. We randomly divide these between
validation and test sets.

Labeling. We experimented with labels y; where yc(;) is equal to the future return of the sth stock-date
pair at a time d trading days in the future. Choosing d involves a tradeoff between indivudal asset
signal being lost to short-term noise versus long-term market trends: From our experiments, d = 32
resulted in the best returns for the baseline model. This corresponds to roughly 6 calendar weeks.

4 Methods

4.1 Weighted Cross Entropy Loss

As discussed above, our labels y represent the return of each asset in X 32 trading days in the future.
Rather than modeling our problem as a regression, however, we want to learn a classifier indicating
whether we should adopt a long, short, or neutral position. [1] In order to speed up learning, we
ignore the neutral option in training, which reduces our problem to a binary classification.

Since we want to preserve the magnitude of each asset’s movement as well the direction, we use for
our loss function a weighted version of cross entropy:
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where y; € R is the true return label vector, b; € {0,1} = y; > 0, and g; € [0, 1] is the output of
the model for example 7. The result of this is a binary classification corresponding to upward or
downward price movement where each example is weighted by the magnitude of the movement.



4.2 SNAIL

In the supervised application of the SNAIL model, the label y; is predicted from inputs x; and the
sequence (1,Y1), .., (xt—1,y:t—1) for time steps 1,...,¢t — 1 by passing the inputs through several
causally masked temporal convolution blocks and attention layers. We employ the original SNAIL
paper’s architecture of two temporal convolution blocks followed by a causal attention layer, with
this pattern repeated twice.

A temporal convolution block consists of [log, ¢] 1D convolutional layers, where ¢ is length of the
input sequence, and the ith layer within each block uses kernel size k¥ = 2 and dilation rate d = 2°.
[8] We include batch normalization and dropout layers before and after each temporal convolution
layer respectively. [10] Additionally, the input to each convolutional layer is concatenated to the
output, forming skip connections.

A causal attention layer performs key-value lookups based on self-attention. [8][12] For an input 7,
key and value sizes k, v, affine transformation f, and causally masked softmax operation s:
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Attention layers return R concatenated to [ as in the convolutional layers. The major difference in
our implementation of SNAIL from Mishra et. al. (2017) is that we replace the final output § with a
length 256 encoding vector vy in the fundamental data module and v; in the technical data module
which are then concatenated and passed to the fully connected block.

4.3 Model

We will discuss results for both a baseline deep feedforward model and an experimental model
incorporating parallel SNAIL modules on the fundamental and technical data inputs.
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Figure 1: The baseline model.
Both models separately encode the technical data xgi) and the fundamental data x”) of each input ¢
as length 256 vectors. The baseline model does this by passing each through two fully-connected

blocks with 256 hidden units. Each block consists of a batch normalization layer, a fully-connected
layer, a ReLU activation layer, and a dropout layer. [S][9]
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Figure 2: The experimental model, with SNAILs as defined above.



The experimental model passes ng) through SNAIL module S; and XEJ) SNAIL module S, with
each outputting a length 256 vector rather then a ¢ prediction, retaining end-to-end differentiability.
In both models, the output vectors are then concatenated and passed through another fully-connected
block with the same structure and 128 hidden units. Finally, a 2-unit softmax layer outputs the class
probabilities.

S Experiments

5.1 Hyperparameter Selection and Tuning

Optimization. Our model is written in Python using the Tensorflow library. [2] This gives us a
premade Adam optimizer that can be used out of the box. [7] We use the default values of 5; = 0.9
and B2 = 0.999, and use learning rate decay to tune the learning rate «, which we decay on a schedule
from 1073 to 10~°. We use a batch size of 128, as larger batch sizes resulted in rapidly diminishing
returns in training speed on our AWS instance.
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Figure 3: Training accuracy, training loss, and learning rate over 50 epochs on the baseline model.
The effect of decaying the learning rate after epoch 20 can be seen clearly in both the accuracy and
loss.

Regularization. Additionally, we use Ly regularization and dropout throught our architectures to
minimize overfitting. We sampled Lo coefficients in the range [107%,1073] and found that 10~°
offered the best balance between low bias and low variance. Similarly, we tested drop rates in
[0.1,0.5] and settled on a drop probability of 0.4.

5.2 [Evaluation Metrics

Because we model our problem as a binary classification problem, accuracy is a passable metric.
Accuracy, however, doesn’t capture the magnitude of movements in price. The metric most indicative
of our model’s performance is the return it would actually generate when trading on our dataset. We
calculate the return R on both the training and validation sets after each epoch,
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where S is the set of stocks being evaluated and 7' is the set of trading days being evaluated for each
stockin S. f(Zst, yst) = yse if the model predicts the direction of x4 correctly, and —y,; otherwise.
R thus represents the mean return the model would achieve by predicting each stock in the dataset
for each trading day and evenly diving some amount of capital among those positions.



5.3 Results

Model Training Set Test Set (all) Test Set (S&P500 only)
Accuracy Return Accuracy | Return | Accuracy Return
Market N/A 183.68% N/A 5.53% N/A 3.49%
Baseline 64.22% | 3717.28% | 60.44% | 19.52% | 55.10% 5.78%
SNAIL x SNAIL | 62.50% | 5652.70% | 62.77% | 22.67% | 51.75% 5.55%

Table 1: Attentive model compared to baseline model and the market.
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Figure 4: Backtested test set performance on all stocks vs. the Dow Jones Industrial average, and
backtested performance on Intel Corporation test data vs. INTC’s real performance

5.4 Discussion

As seen in the above table, both neural models achieve large returns on the test set. The test set
consists entirely of data corresponding to trading days that take place after the latest trading day in
the training set, so there is no look-ahead bias involved.

Qualitatively, it can be seen in the chart the the baseline and experimental models perform quite
similarly, except the experimental attentive model gains an edge in in volatile periods. This provides
an explanation for why the baseline slightly models outperform on the S&P500 subset: this is a set of
large companies that are less volatile than the rest of the stocks in the dataset.

We see some overfitting to the training set despite the regularization used, but not to the extent that
the model fails to generalize to the test data. The overfitting we do see is likely due to each training
example sharing index price and volatility features. Examples taken from the same day are highly
correlated because of broad market forces, and since each one shares values the model can overfit
specifically to these universal features.

6 Conclusion

Summary. We have shown that both a basic feedforward MLP and a hybrid attentive DNN can
outperform the market in making medium-frequency trades. The attentive model outperforms the
market on assets of all capitalization sizes. Modeling asset price prediction as a meta-learning task
across assets leads to models which are able to generalize well both temporally and across assets.

Future work. Our return metric R is not weighted by confidence. By allocating capital among stocks
based on confidence rather than uniformly, results could be improved without needing to change the
model itself. Additionally, this model could be adapted to intraday trading. The attention mechanism
seems well suited to picking out transient signals that can inform profitable trades. Finally, our model
gave no consideration to trading fees. Since we only have one data point every four days for any
given stock, this is not a huge factor, but it is a factor, and any market-ready model needs to be able
to account for this.

Code. The project code can be found at https://github.com/wdg3/attentive-neural-algo.
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We would like to thank Jay Whang for his valuable feedback over the course of this project, especially
regarding loss functions and project structure.
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