Text Style Transfer

Gao Han
gh352@stanford.edu

Abstract— Text style transfer is a technique to rewrite sen-
tences from one style to a different style while at the same time
preserving the semantic contents. The main challenge of this
project is how well we can preserve the content meaning after
the style transfer process due to the lack of parallel data that
connects the source and target styles. In this project, we use
GANSs to apply style transfer onto textual contents, trained on
tweets scraped from Obama and Trump’s twitter account. Our
style transfer generator is able to rewrite tweets from Trump
to ones that has Obama’s writing style (based on his tweets)
and vise versa, and the generated contents achieves 80% of
accuracy based on a classifier we trained to distinguish tweets
from Obama and from Trump.

I. MOTIVATION

In many situations, for a robust language generation
system, flexible control over its expression is necessary.
Contents whether artificial or not, may need to be expressed
in different ways. In the case of anonymization, writings
should be converted to a style that’s neutral and common.
Another example is to help with content understanding - for
instance politicians often prefer languages of vagueness and
exaggerations, and with style transfer, its possible to strip
away the hyperbole to expose the real meaning expressed
in plain English. In general, this transformation of style
is also closely relevant to dialogue generation, machine
translation, and writing assistant applications. This motivates
us to build a text style transfer model, with a goal to turn an
input sentence into a new style, while preserving the style
independent content.

II. RELATED WORK

There have been some studies on text style transfer using
various approaches. Shen et al. [1] used variational auto-
encoders (VAEs) with GANs trained using non-parrallel
texts. They use cross-aligning auto-encoder model which
consists of an encoding step to infer the content and a
decoding step to generate the sentence with the target style.
Then the generated sentence teacher-forced by the original
words is compared with the transferred sentence self-fed by
previous output logits using a discriminator.

Yangl et al. [2] also trained a text style transfer with
GANSs but with a different loss function which is the negative
log likelihood (NLL). They find that this algorithm achieves
slightly greater BLEU scores than Shen’s model. The main
difference is that they use an implicitly trained language
model as a new type of discriminator, replacing the more
conventional binary classifier. The motivation for this change
is that error signals from a binary classifier is sometimes
insufficient to train the generator to produce fluent language,

Zhuoming Li
zli342@stanford.edu

and optimization can be unstable as a result of the adversarial
training step.

III. DATASET AND FEATURES

A. Dataset Overview

Since we plan to do text style transfer for Barack Obama
and Donald Trump, we obtained their data by scraping
tweets from their Twitter accounts @BarackObama and
@realDonaldTrump. We use the twitter API to scrape all
tweets with a scraper here. Specifically, the data for Trump is
from 2017/1/1 to 2018/12/31 (6730 tweets), and the data for
Obama is from 2012/1/1 to 2013/12/31 (5275 tweets). The
date range is chosen based on their incumbency, because for
other dates the data is sparse and the style can be different.
For example, prior to 2016, Trump seldomly uses make
america great again, and after 2017 Obama only sends a few
tweets in a month and is mostly about his family resulting
in less content match).

B. Data Preprocessing

Since tweets are somewhat different from normal writings
and contains twitter specific marks, we need the following
processing before we use the data for training. 1. Mask all
targets (), hashtags (#), and numbers to decrease OOV count.
2. Insert spaces to punctuation so that they will be treated
as words. This is very important as many punctuation has
sentiment and can represent ones writing style (such as !
at the end of the sentence, which is a very strong signal).
3. Break each tweet into several examples, each containing
exactly one sentence. We observed that many tweets are
fairly long (more than 3 sentences and 20 words), and
long ones will be especially hard to train or to get good
results. In addition, chopping tweets into several examples
can increase the size of our training set as well. 4. Remove
irrelevant contents. Though tweets from Trumps account are
always written by himself (at least it looks like so), many
tweets from Obamas account are drafted by his staff and
are normally in the format of President Obama says, which
adds noise to the training set. Since the content inside these
tweets are still useful data, we removed the prefix and kept
the content for these tweets.

C. Label Definition

Tweets downloaded from Obama are labeled as 0 and
Tweets from Trump are labeled as 1.

IV. MODEL REPRESENTATION
A. Architecture Overview

On a high level, we would like to convert Obama text
into its style-free latent representation. Given the latent
representation, we want to reconstruct its original Obama
style as well as transfer into Trump style as shown in the
figure below.

Obama
Corpus

Trump
LateQ Corpus

Fig. 1: Transfer between different corpora

Based on Shen et al. [1]’s work, the model consists of an
encoder F, a generator G and two discriminators D1, D2
as illustrated in figure 2.

Embeddings

Professor-forcing

(Teacher-forcing)

[y1 z1]

[y1 22)

Discriminator
(Free-running)

%/_/

Fig. 2: Model overview

As part of the problem setup, we assume our focus is
on two different styles y; and y». Sentences 1 and xo from
Tweets of each style are first broken down into tokens, which
then are transformed into embeddings. For embeddings, it’s
possible to co-train them together with the model or make
use of existing pre-trained word embeddings, such as Google
News Word2Vec or GloVe embeddings. Each approach has
its own pros and cons, and we will detail more of that based
on our experiments in the following sections.

Encoder takes word embeddings as input and outputs the
corresponding latent representation z. After having obtained

latent z, we unroll decoder (a.k.a generator) on latent repre-
sentation z to generate two sequences of intermediary states:
one using teacher-forcing and the other using free-running
approach that utilizes the Softmax output of the RNN cell
from previous timestamp.

As the last step, we apply discriminator to differentiate
between the two sequences, which aims to align the latent
space during generation to ensure the transferred x5 (now of
style y;) matches the population of the original z;.

B. Model Optimization

There are two objectives that we strive to optimize for.
The first one is the reconstruction loss, which measures how
well the model performs in terms of transferring x; to style
y2 and back to y; without losing much of its original content.
This property is captured in the following equation and log
is added to ensure numerical stability.

‘C’I"EC(GE70G) E($1,y1))]+

E(z2,y2))]

The second objective that we care for is the adversarial
loss, which aligns the latent space for the transfer of y; to y2
and vice versa. In our case, D;’s job is to distinguish between
the real x; and transferred x2, and D2’s used to distinguish
between real zo and transferred x;. Together with Professor-
forcing technique, the latent space for the two scenarios can
be aligned.

- Ezlel [_ IngG(351|yl»
- EZEQNXQ [_ long(352|y27

- Zlog 1— Dy(hS"))

=1

—— Zlong

To combine reconstruction loss mathcalL,.. and two
adversarial losses Lq4y, and Lgdy,, We arrive at the final
objective of the model:

adv1 ==

Erac - A(‘C'(Mivl + Eadvg)

V. RESULTS AND DISCUSSION
A. Co-trained embedding

We started off with co-training embeddings together with
the model. The advantage of this approach is that we
have control over the dimensions of the embedding space.
Otherwise, we will have to employ dimension reduction tech-
niques, such as random projection (Gaussian or Sparse) [3]
or PCA, to adjust the dimension to our specific application,
which adds extra overhead and likely introduce noise in the
process.

For training, we used the recommended hyper-parameter
setting from the original paper and obtained the following
graphs for reconstruction loss, adversarial loss and total loss:

Both reconstruction loss and total loss are trending down-
wards with adversarial loss going up. The training process
overall reduced total loss from 76.86 to 68.15 after 20
epochs, and reduced reconstruction loss from 74.80 to 63.89
after 20 epochs.

Rec_loss Adv_loss Total_loss

Fig. 3: Graphs for training losses with co-trained embeddings

We sampled some examples from the trained model. The
following table consists of 3 parts: the original input, the
reconstructed output of original style and the transferred. The
input has two parts: an label of 0 and 1, which refers to
Obama and Trump style respectively; and the input sentence
to be reconstructed or transferred.

Input Reconstruction Transferred

1 make america

Rec_loss Adv_loss Total_loss

Fig. 4: Graphs for training losses with pre-trained embed-
dings

which are lower than the co-training case. This observation
stays the same after we have repeated the training for each
case multiple times, which indicates that the pre-trained
Word2Vec embeddings are helping the model to better learn
the relationships between words and to better approximate
the underlying probability distribution.

We performed the same sampling experiments with the
pre-trained embedding and obtained the following contents:

great again

thank you !

president obama

0 tell congress to
get the american

we want to get
the american
people .

i will be a great
job !

Input Reconstruction Transferred
1 make america | thank you to vote | add your name:
great again !

0 put it up for a
vote .

it’s time for the
american people .

theu.s.

1 we must
maintain a strong
southern border .

we will be a great
job .

we want to do the
american people .

0 tell congress to
get the american

add your name to
make your voice

thank you to see
the house of our

to get up . country .
0 put it up for a | it’s time to see | in the world .
vote . the (unk).

The reconstructed and transferred results are still far from

1 we must
maintain a strong

we will be a great
job .

we need to make
our country .

ideal, but they have captured the style of each corpus to a
certain degree. For instance, fell congress to get the american
is referring to encourage congress to get more american
people to vote and the reconstructed sentence was able to
keep this formation and expanded it further with american
people. The transferred counterpart is also able to embody
the flamboyant Trump style of i will be a great job !.

The first example from the above table is attempting to
transfer Trump’s campaign slogan make america great again
into Obama’s Yes, we can. However, the model is not able to
perform the transfer likely due to the size of our dataset as
well as it would need extra contextual information to enable
the model to realize the slogans are counterparts of each
other, which is a really difficult learning task.

B. Pre-trained embedding

After experimenting with co-training embeddings, we
decided to try out pre-trained embeddings. Google News
Word2Vec embeddings is chosen because its ease of use
and high quality. Google News embeddings have dimensions
of 300 which is bigger than our co-training embedding of
dimension 100. As part of the future work, we can choose
to reduce its dimension via random project or PCA, which
can in turn , speed up training and likely reduce variance.

The reconstruction loss and total loss follow the same
patterns as previous model training with co-trained embed-
dings. With pre-trained embeddings, the model is able to
reduce total loss to 66.75 and reconstruction loss to 62.24,

southern border .

Generally speaking, with pre-trained embedding, the
model is able to generate longer and more sensible sentences.
For instance, make america great again is reconstructed
into thank you to vote!, which includes to vote! with an
exclamation point that is known to be a consistent theme
of Trump’s style.

For the second example, the input tell congress to get the
american is reconstructed as add your name to mark your
voice to get up. The model understands the underlying latent
meaning to get people to vote and rephrased it in a different
way.

VI. CONCLUSION

Making style transfer on texts has started to gain attention
recently using both parallel data and non-parallel data. In
this work, we are able to perform text style transfer on
tweets from Trump and Obama by formulating the task as a
decipherment problem using non-parallel data scraped from
Twitter websites. We optimize neural networks by forcing
the distribution alignment over the latent space, and showed
the effectiveness of our method with style evaluation (using
a style classification) and human evaluation (by evaluating
the quality of generated sentences). The actual task is proven
to be quite difficult and the results are not as desirable as
we originally expected them to be. This is likely because
that the writing style of Trump and Obama are too complex

and subtle for the network to learn and generalize. On top
of that, the available training data is limited and there are
only so much usable Tweets from Trump and Obama given
that we are only interested in the duration when they are in
office and minus the filtering criteria.

VII. CONTRIBUTIONS

The two of us paired up on all components of this project,
including dataset cleaning, feature engineering, model for-
mulation / evaluation, and the write-up of this report and the
poster.

Codebase: https://zhuoming_li@bitbucket.
org/zhuoming_li/style_transfer.git

REFERENCES

[1] R. B. T. J. Tianxiao Shen, Tao Lei, “Style transfer from non-parallel
text by cross-alignment,” 2017.

[2] C.D. E. P. X. T. B.-K. Zichao Yang, Zhiting Hu, “Unsupervised text
style transfer using language models as discriminators,” 2018.

[3] F Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

