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Abstract

In this study, predictive multi-class models are trained for chest x-ray diagnosis
of 14 observations using different deep learning architectures and a large dataset
of chest x-ray images called CheXpert. First, three different deep learning models
including VGG-16, ResNet-50, and DenseNet-121 are trained on an Amazon AWS
EC2 GPU instance. For DenseNet-121, both transfer learning and full training
are applied. While a good accuracy is achieved on testset data, the F1 scores on a
few observations were low. This was an indication of model robustness issue for a
few class predictions. Further analysis of the data indicates an unbalance between
available data for those observations with low F1 scores. An up-sampling approach
is applied to balance the training data. This results in a significant improvement
in both accuracy and F1 scores over the testset data. Finally, a gradient weighted
Class Activation Map is applied to localize the highest probability observation for
a given x-ray image input.

1 Introduction

Initially, the project was proposed to develop automatic detection models for manufacturing defects
during production process. However, the available data was assessed to be limited at the time of
the project. Therefore, a similar important problem from Chest radiography is selected for this
study to train deep learning models for automated multi-classification of chest x-ray images for 14
observations. Furthermore, a class activation map is applied to localize a selected positive observation.
A schematic view of the modeling framework developed in this study is shown in Figure 1. The codes
and results of this study are shared in [1].

2 Related Work

In [2], a 121-layer convolutional neural network model is trained on ChestX-rayl4 chest image
dataset containing observations for 14 diseases. In this reference, the model predicts the probability of
the observations along with a heatmap localizing the areas of the image most indicative of pneumonia.
Similar to this study, the output of CNN is modified to predict 14 outputs with sigmiod activation.
In [3], the authors extend this work to CheXpert, a larger dataset. In this reference, a few CNN
architectures are trained and DenseNet121 is shown to achieve the best performance. Both these
references provide the background for this study. Incorporating these models and dataset along with a
method to deal with unbalanced dataset using up-sampling approach is the contribution of this study.
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Figure 1: Schematic view of the developed model

3 Dataset and Features

The data is based on CheXpert dataset for chest radiograph interpretation, consisting of 224,316 chest
radiographs of 65,240 patients. This data is available in reference [3]. In this study, only frontal
view of chest x-ray images are considered. Furthermore, "Age", "Sex" and "AP/PA" features are not
considered in training. Since the main goal of this study is a model to be used as a first detection tool
for the doctors to do further assessment, the cost of false negative is high and all uncertainties are set
to positive in the dataset.

The training data are split into training set, test set and validation set with 10% of data for validation
and 10% for test set.

4 Methods

To develop the predictive model, three deep learning model architectures including VGG-16 [5],
ResNet-50 [6], and DenseNet-121 [7] are trained. The pre-defined models from Keras [4] is employed
as the base model and the last layers are modified to add a global spatial average pooling layer, a
fully connected layer with Relu activation, and finally a logistic layer for 14 outputs with sigmoid
activation. The loss function is defined to be binary cross entropy. Adam optimizer with » = 0.0001
(learning rate), 5, = 0.9, and B = 0.999.

5 Performance Results and Analysis

5.1 DenseNet-121 with transfer learning

First, the DenseNet model with the added layers are trained using transfer learning method. For this
purpose, all layers of the base model were set to be frozen with the weights trained on ImageNet
dataset. With this approach, 1, 063, 950 of the parameters out of total of 8, 101, 454 parameters are
trainable. The training of the model results in accuracy = 0.80 on test data. Furthermore, the model
results on false positive and negative is summarized in table 1. It is observed that, while the prediction
accuracy is relatively acceptable, the F1-score results are overall low.

5.2 DenseNet-121 Full Training

Since transfer learning approach with lower number of tuneable parameters led to low F1 score results
on testset data, this might be an indication of over-fitting. Therefore in this section, all parameters of
the model (about 8 million parameters) are set to be tuneable without freezing any layer. This model
trained over the dataset and in 0.85 test set accuracy. Furthermore, the F1 score results are shown in
Table 2. The results indicate improved performance on testset data. This indicates that the overfitting
was part of the low performance of the model. However as seen in Table 2, the F1 scores are still
low on a few observations including Enlarged Cardiomediastinum, Lung Lesion, Pneumonia, Pleural



Table 1: Fl-score on testset with DenseNet model trained with transfer learning

precision recall fl-score support

No Finding 0.45 0.19 0.27 1679
Enlarged Cardiomediastinum 0.00 0.00 0.00 1880
Cardiomegaly 0.26 0.24 0.25 2991
Lung Opacity 0.65 0.37 0.47 9908
Lung Lesion 0.00 0.00 0.00 810
Edema 0.59 0.14 0.22 6203
Consolidation 0.00 0.00 0.00 3824
Pneumonia 0.00 0.00 0.00 2049
Atelectasis 0.00 0.00 0.00 6047
Pneumothorax 0.00 0.00 0.00 2084
Pleural Effusion 0.64 0.46 0.53 8740
Pleural Other 0.00 0.00 0.00 431
Fracture 0.00 0.00 0.00 787

Support Devices 0.65 0.85 0.74 10848
micro avg 0.60 0.32 0.42 58281

macro avg 0.23 0.16 0.18 58281
weighted avg 0.42 0.32 0.34 58281
samples avg 0.49 0.30 0.34 58281

Table 2: Fl-score on testset with DenseNet model - full learning

precision recall fl-score support

No Finding 0.77 0.06 0.11 1683
Enlarged Cardiomediastinum 0.75 0.00 0.00 1928
Cardiomegaly 0.66 0.49 0.56 3089
Lung Opacity 0.63 0.87 0.73 9920
Lung Lesion 0.67 0.04 0.08 799
Edema 0.64 0.74 0.69 6200
Consolidation 0.52 0.03 0.06 3727
Pneumonia 0.56 0.08 0.14 2112
Atelectasis 0.58 0.32 0.41 5879
Pneumothorax 0.77 0.24 0.36 2053
Pleural Effusion 0.69 0.91 0.79 8679
Pleural Other 0.50 0.01 0.01 433
Fracture 0.57 0.02 0.03 755

Support Devices 0.89 0.73 0.80 10844
micro avg 0.69 0.57 0.63 58101

macro avg 0.66 0.32 0.34 58101
weighted avg 0.69 0.57 0.56 58101
samples avg 0.63 0.54 0.55 58101

Other, and Fracture. Before we do an error analysis on the results, 2 more model architectures are
trained on the dataset in the next section.

5.3 Other model architecture: VGG-16 and ResNet-50

In this section, the VGG-16 and ResNet-50 architectures from Keras are trained. The detailed results
are available in [1]. The summary of the average F1 scores are listed in Table 3. It is concluded that
the model structure did not improve the F1 scores further.



Table 3: Model Structure Impact (DenseNet-121 is selected for error analysis and further improve-
ment)

DenseNet-121 VGG-16 ResNet-50
micro avg 0.63 0.60 0.61
macro avg 0.34 0.30 0.33
weighted avg 0.56 0.52 0.55
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Figure 2: Data distribution

6 Balancing CheXpert train data to improve the selected DenseNet-121
robustness performance

Further exploration on the training data is done in this section to identify methods to improve the low
F1 scores of the few observations. The distribution of train data and the correlation matrix are shown
in Figure 2. The results indicate that the size of training data for the observations with low F1 scores
is much lower comparing to the ones with high F1 score. This indicates the issue of unbalanced data
for this multi-class classification problem. To fix this issue, an up-sampling approach is applied on
the class observations with low size. The distribution of the re-sampled data are shown in Figure
3 showing more balanced train data. This approach has similar effect as having a weighted loss
function with higher weight for the observations with low training size. The DenseNet-121 model
was re-trained with the balanced dataset and the results on the same testset data are shown in Table 4.
The accuracy of the model on testset data is 0.88. The results indicate significant improvement in the
performance of the trained model particularly on F1 scores for all observations.
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Figure 3: Data distribution after balancing through up-sampling approach



Table 4: The results of the DenseNet-121 model trained on the balanced data
(significant improvement is achieved with balancing data)

precision recall fl-score  support
No Finding 0.72 0.84 0.77 2291
Enlarged Cardiomediastinum 0.63 0.32 0.42 2100
Cardiomegaly 0.58 0.70 0.64 2662
Lung Opacity 0.74 0.71 0.73 9283
Lung Lesion 0.71 0.95 0.81 861
Edema 0.69 0.73 0.71 5619
Consolidation 0.43 0.76 0.55 3643
Pneumonia 0.64 0.45 0.52 2042
Atelectasis 0.66 0.65 0.66 6581
Pneumothorax 0.64 0.51 0.57 1439
Pleural Effusion 0.77 0.76 0.77 6775
Pleural Other 0.59 0.96 0.73 314
Fracture 0.52 0.99 0.68 880
Support Devices 0.85 0.83 0.84 9736
micro avg 0.69 0.72 0.70 54226
macro avg 0.66 0.72 0.67 54226
weighted avg 0.70 0.72 0.70 54226
samples avg 0.66 0.69 0.65 54226
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Figure 4: A sample of Class Activation Map application

7 Weighted Gradient Class Activation Map

Finally, the weighted gradient class activation map is applied on the last convolution layer of the
DenseNet model trained on the balanced data [8]. The results are shown in Figure 4 for the predicted
observation with highest probability.

8 Conclusion and Future Work

A predictive model for chest x-ray observation over large amount of data is developed in this study.
The DenseNet-121 model is shown the best performance after balancing training data for all class
observations. This indicates the importance of both model architecture design and data processing for
successful application of deep learning techniques. For the next steps, further hyper-parameter tuning
is proposed to be done particularly on positive class threshold after sigmiod activation. Furthermore,
the CheXpert data is proposed to be combined with other x-ray image data including MIMIC-CXR
dataset. Finally, an image segmentation can be applied by developing corresponding dataset based on
methods such as Class Activation Map applied in this study.
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