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Abstract

We study the problem of Trajectory Predictions for Autonomous Driving which is
of paramount importance to support Decision Making and Planning. We investigate
different architectures: RNN based sequence to sequence and attention models but
also and for the first time to the best of our knowledge, we study the customization
and applicability of Transfomer models to trajectory predictions. We enhance
with Spatial Attention the Convolutional Social Poling layer of a state-of-the-art
architecture. We improve over the state-of-the-art baseline by 10%.

1 Introduction

We investigate the problem of Trajectory Predictions for Autonomous Driving [8] with the ultimate
goal of supporting and improving Decision Making and Planning. We are interested by trajectory
predictions that are: probabilistic to account for uncertainty so we can later on plan accordingly,
multimodal to account for different possible maneuvers, as we want to better anticipate a set of
possible trajectories to enable safer human-like anticipation, and over 0s - 5s time horizon.

Most of the studies focus on some specific parts of the problem. Some studies focus on short-term
predictions and physical features mainly ignoring Behavioral features [1]. Other studies focus on
capturing one or a few realistic human like driving models for later use in simulation [6]. We want to
study and benchmark different candidate architectures and investigate how to best combine physical,
contextual and behavioral features in a single architecture suitable for online Os - 5s predictions.

2 Related work

We explore how to improve trajectory predictions over existing publications with state of the art results
[7] and especially [4]. We use the later reference as a baseline and starting point for experiments.
This reference has lots of features we are interested in: multimodality, probabilistic, reference
implementation available, state of the art results published.

We investigate sequence to sequence models [13][10], attention mechanisms [3][9] to let the RNN
decoder learn to focus over a specific range of the input sequence and transformer models [14]. While
these techniques have been mainly developed to improve machine translation we believe they could
be useful for trajectory predictions as in [12][10][1].
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3 Dataset and Features

We use from the NGSIM dataset the US Highway 101 dataset (US-101) and Interstate 80 Freeway
dataset (I-80).

The datasets made up of 6 recordings of 15 minutes each is captured from a bird’s-eye view of the
highway with a static camera at 10 Hz. In total we have 8.3 millions samples split into 70% for the
training set, 10% for the development set and 20% for the test set. This split was used in [4] and [5]
which makes it our reference. To predict the trajectory over next 5 seconds, we use past 3 seconds
(z,y) information about a vehicle and past 3 seconds of a (13, 3) occupancy grid around that vehicle;
where each grid cell is of the size of a standard vehicle.

4 Methods

4.1 Loss function

We account for the probabilistic and multimodal aspects of trajectory predictions by combining one
regression loss with two classification losses.

We predict a 2D trajectory over a 5 seconds horizon with a probabilistic model: at each time step, a
5D vector corresponding to the parameters of a bivariate Gaussian distribution is derived, giving the
distribution of the future locations of the predicted vehicle at that time step. We are looking for the
parameters of the following model:
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On top of the RNN LSTM decoder (cf figure 2), at every time step, we use a linear layer converting
128 features out of the RNN LSTM output to 5 values 1, y2, ¥3, ¥4, y5 followed by a non linear layer

such that ix = y1, iy = y2,0x = exp (y3) , 0y = exp (ya), p = tanh (ys).
We minimize the Negative Log Likelihood of f (x,y):
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For maneuver predictions we use 2 cross-entropy loss functions, one for lateral maneuver classification
(we are using 3 classes: Left-Change-Line, Right-Change-Line, No-Change-Line) and one for
longitudinal maneuver classification (we are using 2 classes corresponding to brake lights indication:
braking or not braking) that are added to above NLL loss function. Lcyossent-lat = — Zf’zl y; log U;
and Lcrossent-lon = — Z?Zl y; log g;. Ultimately the loss function is a combination of a regression
loss with 2 classification losses: Loss = Ly + Lcrossent-lat + Lcrossent-lon-

4.2 Neural network architecture
4.2.1 Neural network architectures

The Baseline is a state-of-the-art architecture described in [4]. The models we propose to investigate
and benchmark against the above baseline are: a sequence to sequence encoder-decoder (seq2seq)
with or without Attention mechanisms as described in figure 1 and a Transformer Model, initially
introduced in [14], providing state of the art results for machine translation.
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Figure 1: Seq2seq with attention

4.2.2 Convolutional social pooling with spatial attention

We enhance the CS-LSTM(M) architecture with Spatial Attention mechanisms so we can deal with
weighted interactions in the convolutional social pooling layer. Like a human driver we do not focus
equally on every neighbours and we would like to learn the best attention weights depending on the
spatio-temporal relationships of the objects. We leverage on an extended set of features to capture the
weights. We refer to this pipeline as CSSA-LSTM(M) for Convolutional Social pooling with Spatial
Attention.
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Figure 2: CSSA-LSTM(M) Model

Every Fully Connected, LSTM and Convolutional layers, with the exception of the Spatial Attention
layer, are followed by a leaky relu non-linearity of coefficient 0.1 . For the convolutional layers,
N stands for the number of filters, f for the filter size, s for stridding and p for padding. The
objective of this architecture is to study what kind of improvement we can get with enhanced features
representation while using a similar architecture than CS-LSTM(M).

5 Experiments/Results/Discussion
The gihub repo is c¢s230-project.

5.1 Transformer experiments

The Transformer has been extensively optimized for Machine Translation tasks. One of the author,
Lukasz Kaiser refers to a list of tricks that are required to make it work. The Learning Rate (LR)
strategy is very unusual, it is recommended to increase regularly the LR before decreasing it with



a rate proportional to step~°-°, label smoothing is used, an auto-regressive decoding is required
and used with beam search and length penalties. Checkpoints averaging is also used to improve
results. Dropout during training at every layer just before residual connections is required and teacher
forcing is used to speed up convergence. In our case, we are dealing with a regression problem
so we have a customized generator layer and we have integrated convolutional processing in the
embeddings layer to process 2D features. Teacher forcing overfits a lot; similar effect is observed
with RNN-LSTM. We get the training working with regular Adam setting but the convergence is
slower with Transformer compared to RNN-LSTM. With the Transformer it is recommended [11] to
use a batch size as big possible. We use a size of 1024, limited by the 16GB memory of a GPU V100
card. With RNN-LSTM we use a batch size of 128.

In terms of network parameters, in the Transformer publication [14] the recommended settings
are: Nigyers = 6,dmodel = 512,dfeed—forward = 2048, hpeads = 8 corresponding to a very
big network trained with 8 GPUs in parallel. With such a network, the training on a single GPU
was too slow. Training with Nj4yers = 2 provided good results on the Training Set but on the
Validation Set results are better with V;4yers = 1. With a much smaller dataset than [14], we tend to
overfit even if we are using dropouts. Finally we use a configuration with Nj,yers = 1, dmoder =
2567 dfeed~forward = 2567 hheads =4.

5.2 RNN-LSTM experiments

For the RNN-LSTM architecture we tried several modifications of the state-of-the-art baseline.
CS-LSTM(M) is not a proper sequence to sequence architecture as the decoder output y<*> is not
used to fed the next input <+!>: the same encoder output is used for every input x<*> of the
decoder, at every time step. But using a seq2seq architecture, a bidirectional encoder, additional
layers, increasing the decoder size and varying the default settings of CS-LSTM(M) was not useful.
The modifications were tested in isolation and the results were almost always similar or worst. The
architecture was most probably already very well optimized. The pure temporal attention mechanisms
in our context are less useful than for machine translation: the input length is relatively small with
T, = 16, as a down sampling factor of 2 is used for the 3 seconds of history data recorded at 10 Hz.
Also by construction a trajectory has much weaker long term dependencies than sentences. On the
other hand spatial attention is more useful. Like a human driver we do not focus equally on every
neighbors and we learn the best attention weights depending on the relationships of the objects and
additional features related to behavior and shapes.

5.3 Qualitative Results

We visualize the decoding results on NGSIM test set. An example is provided below. A trajectory
with an associated probability is predicted for every possible maneuver. For every possible maneuver
a set of 25 tuples, one tuple every 200 ms, is generated: (uy, fty, 0z, 0y, p). Every tuple corresponds
to the parameters of a bivariate Gaussian distribution. On the figure below we visualize such a
distribution for a point at a 3 seconds time horizon. The red points correspond to the predicted
trajectory while the green points correspond to the ground truth. We can check that the level of
uncertainty is bigger for the longitudinal prediction than for the lateral position: which makes sense
given the road geometry and traffic flow. This point is important to keep in mind when looking at
RMSE results.
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Figure 3: Probabilistic and Multimodal Model



5.4 Quantitative Results

The different architectures without enhanced features pipeline provide similar results. But the
RNN-LSTM variants are 10 times smaller in size, faster too train (time per epoch) and faster to
converge than the Transformer (fewer epochs). We nevertheless have to be careful before drawing
firm conclusions: the NGSIM dataset is relatively small (less than 10 million samples) and some big
network architectures shine with lots of data. Finally the results are improved by injecting additional
features processing capabilities. The Spatial Attention is a natural extension to achieve human like
driving capabilities. We use additional features related to the shape and class of objects to better
weight the interactions.

Table 1: RMSE (m) Benchmark results

Prediction horizon CV  Baseline CS-LSTM(M) [4] Seq2seq Transformer CSSA-LSTM(M)

1 sec 0.73 0.58 0.59 0.52 0.42
2 sec 1.78 1.27 1.28 1.23 1.06
3 sec 3.13 2.12 2.14 207 1.85
4 sec 4.78 3.19 3.25 3.23 2.85
5 sec 6.68 4.51 4.59 4.70 4.11

We also quantify the benefits of using a grid of past 3 seconds trajectories encoded by a LSTM
network over a raw occupancy grid 4:
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@

Figure 4: RMSE per grid type

We keep on reasoning with unquantized (X, Y") coordinates with a 13 x 3 grid of trajectories: this
may be the main benefit over an history of a raw 13 X 3 occupancy grid.

A remaining problem with the existing CS-LSTM(M) or CSSA-LSTM(M) trajectory grid mechanism
is that due to the grid quantification, some vehicle trajectories may be ignored: 2 cars may spread
over a same grid cell but a single trajectory is accounted for by grid cell. This problem could be
solved by using either a lower granularity grid or 3D convolutions, by stacking several trajectories
per grid cell.

6 Conclusion/Future Work

We came up with a detailed analysis of trajectory predictions for Autonomous Driving dealing with
probabilistic and multimodal predictions. We explored and benchmarked different architectures. We
demonstrated the applicability of transformer models to this problem with results that are close to
state-of-the-art RNN-LSTM results. The transformer models are mainly used and heavily customized
for Machine Translation: they are quite difficult and specific to tune. We can expect that there is still
room for improvement. We enhance with Spatial Attention an existing state-of-the-art CS-LSTM(M)
model. We call it CSSA-LSTM(M). We improve over the state-of-the-art baseline by 10%. The
NGSIM dataset is relatively limited in terms of variety of interactions: it is limited to highway and
freeway driving with cars, trucks and motorbikes. As a consequence future work would require
experimenting in more heterogeneous environments like urban cities where Spatial Attention should
be even more relevant.
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