Future Prediction in Brownian Dynamics Simulations
Using Deep Neural Networks

Brian K. Ryu
Department of Chemical Engineering
Stanford University
bryu@stanford.edu

Abstract

Computational cost of large and lengthy Brownian Dynamics simulations is a
principle challenged faced by scientific researchers. In this work, I utilize deep
residual networks to alleviate the computational cost of dynamic simulations by
circumventing the computation of every time step and predicting future states of a
simulation system. I present qualitative and quantitative evaluations of predictions,
which are able to replicate the accuracy of simulations with a system size of 8,788
particles. This novel method for reducing the cost of simulations sets a foundation
for a new avenue of deep learning application in the research of physical sciences.

1 Introduction

Brownian dynamics (BD) is a branch of molecular dynamics (MD) that simulates the stochastic
motion of Brownian particles to predict material properties. These dynamic simulations compute the
time-evolution of a simulation system by iteratively computing forces acting on particles at each time
step, integrating over time to find the displacement (changes in positions), and updating positions of
particles. The primary difference between BD and MD is the size of particles that are being modeled;
while MD precisely computes the dynamics of every molecule to model small systems (< 10nm), BD
coarse-grains molecules into larger particles and simulates the Brownian and deterministic forces on
larger particles that comprise many molecules to model larger systems (< 1mm).[1-2] Researchers
use BD simulations to obtain understandings of soft and condensed matter such as suspensions, gels,
and glasses.

Similar to MD, a principle challenge of BD simulations is the prohibitive computational work required
to examine phenomena that occur at long time scales.[3-4] For example, simulating the lifetime of a
gel may require O(10'°) time steps. Furthermore, these simulations often require system sizes with
N = 106 particles to faithfully replicate macroscopic behavior of materials where the computational
complexity of a single time step often scales as O(N?). The total resultant cost is the product of
operations per time step and the number of time steps. Despite continuous advances in computing
power, computational cost remains the biggest concern for researchers who utilize BD simulations.

In this project, I utilize deep learning (DL) techniques to predict the future state (timestep) of BD
simulations based on its current state. The goal is to bypass computing every time step for systems
that undergo only small changes between each timestep. To the best of my knowledge, predicting
a future timestep in BD/MD simulations via DL instead of explicit computation has not been done
in literarture. Using the LAMMPS molecular dynamics software,[5] I have generated a dataset
comprising 14,400 simulation snapshots, which undergo slow non-equilibrium processes that are
mildly stochastic (Brownian) yet largely deterministic. The input to my algorithm is a “simulation
trajectory" file — a list of (X, y, z) positions of all particles at a given time step. I use ResNet

CS230: Deep Learning, Spring 2019, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

architectures to output a predicted simulation trajectory at a future time. Because this work explores
a novel realm of application of DL in BD research, I have focused on the implementation of several
neural network architectures and compared performance to rationalize which architecture performs
best.

2 Related work

Several works in literature have attempted to develop machine learning (ML) and deep learning
techniques to aid MD/BD simulations. One prominent category of DL for MD is in biomedicine;
deep learning is beginning to impact biological research by integrating large data and molecular
informatics for drug discovery and design.[6-8] Supported by rapidly growing genomic and proteomic
sequence data, rational drug design via deep learning has shown significant improvement in the
past few years and has yet realized its full potential. Another important field of DL application
for physics and MD simulations is replacing computation-heavy density function theory (DFT)
calculations of quantum mechanical equations with deep neural networks to reduce the computational
work per time step in MD simulations.[9-10] These DL techniques have shown considerable amount
of performance improvement, achieving upto a factor 100 improvement in performance, without
significant loss in accuracy. Very recently, DL techniques for areas such as chemical reaction kinetics
and computational structural biology have emerged,[11] but little attention has been given to actually
reducing the number of time steps in simulations, which still remains a challenge. Hence, this work
will attempt to tackle the unprecedented problem of how to bypass computing every single time step.

3 Dataset and Features

The data set contains 14,400 LAMMPS trajectory files (.lammpstrj) or simulation snapshots that con-
tain information pertaining to the simulation system.[5] I have split the dataset into 12,000/1,200/1,200
as train/dev/test datasets. The dataset was created specifically for this project. Typical trajectory
files used for scientific research include information such as: current timestep, size and number of
particles in the simulation box, particle IDs, types (e.g. H20 or CO2), (x,y,z) coordinates, linear and
angular velocities, charge and etc.

For this work, I use trajectory files from simulations that undergo deterministic phase separation with
small stochastic Brownian particle displacements. The data files contain particle IDs, types, and
(x,y,z) positions as floating point numbers. These snapshots can be rendered as images for qualitative
visual inspections as shown in Figure 1. Each .lJammpstrj file contains two snapshots in a single file

Many
Contacts

No
Contacts

Figure 1: Images rendered from simulation snapshots undergoing slow phase separation, separated
by 10° time steps. Particle colors indicate number of contacts.

that are used as inputs and labels, and are 10° timesteps separated apart. The number of particles is
set to be constant (8,788) to limit the scope of project to developing and testing various architectures.
Future work will extend the models in this work for larger systems and variable number of particles.
The dataset preprocessed by normalizing positions with respect to the simulation box size so that all
(x, y, z) particle positions range from O to 1.

4 Methods

Our model heavily utilizes residual connections inspired by the work by He et al.[12]

4.1 Model Description
The inputs and outputs of the model are 26364 floating point numbers corresponding to (X,y,z)
positions of 8788 particles. The model contains several (up to seven) residual blocks, as shown

Input Trajectory Flatten and Compute Output Layer
(8788 x 3) Normalize Displacement (8788 x 3)

_} Preprocess -' R;foigll(jzl -b

Figure 2: The structure of model architecture.

in Figure 2. Because both the input and output data are vectors of matching dimensions, I chose
mean-squared error (MSE) as the loss function for the neural network. Since small changes in
positions are expected, Lo regularization was applied, which also helps prevent overfitting. The
resultant cost function is:
26364
J@y) == > @G-y’ +21)_] 0
J

i=1

where y is the label, § is the predicted output positions, and A is the regularization parameter.

4.2 Residual Block

The output activations of this neural network predicts an updated position based on the input list of

positions. Hence, the future state predominantly depends on the current state and a residual block

may take advantage of the nature of this computation. As depicted in the architecture of Figure 3,
via residual connection

Input positions Neural network Displacements Output positions
(26364) predicts displacement (26364) (26364)

Transfer input positions

Figure 3: The schematic and rationale of a residual block.

the main path computes the particles’ displacement whereas the initial position is transferred via a
residual connection. The output position is predicted as the sum of initial positions and displacements.
This architecture trains the neural network to learn to compute displacements between timesteps,
which is similar to actual computations done in MD/BD software and thus achieves significantly
better results compared to fully connected, plain networks.

5 Results and Discussion

5.1 Architecture Comparison

To evaluate the efficacy of neural networks in achieving the goals of this project, plain and residual
networks of varying depths were examined. After exploring a range of hyperparameters, I used
a learning rate a = 0.00005, regularization parameter A = 0.00001, and mini-batch size 512 to
achieve maximum accuracy. The resultant training progress may be slow, but priority was given to
reducing the loss; the ability to produce accurate results was preferred over small improvements in
training time. Small perturbations in learning rate and regularization parameter near these values did
not further improve accuracy and training rate beyond the current rate, suggesting a local minimum in
training accuracy and rate. The model specifications and results are summarized in Table 1. Training
progresses via validation loss as a function of epochs using these architectures are shown in Figure 4.

As seen in Table 1, Residual networks perform significantly better in predicting the future positions
of particles than plain networks. As rationalized previously the superior performance is due to the
nature of predictions made by the network; plain networks must learn to predict positions in addition

Number of Average # of Training Validation Test

Model Type Layers/Res. Blocks Nodes per Layer Loss Loss Loss
FC-1 Plain 1 Layer 5000 2.41e-03 2.35e-03 2.34e-03
FC-5 Plain 5 Layer 4000 2.81e-03 2.71e-03 2.74e-03
Res-1 Residual 1 Block 3500 2.61e-05 2.55e-05 2.48e-05
Res-3 Residual 3 Blocks 3000 2.60E-05 2.55e-05 2.48e-05
Res-5 Residual 5 Blocks 1600 2.60e-05 2.56e-05 2.49¢-05
Res-7 Residual 7 Blocks 1300 2.60e-05 2.55e-05 2.48e-05

Table 1: Summary of model architectures and training outcomes. Each residual block contained four
fully connected layers. MSE was used for loss function. Training was done for 60 epochs.

to displacements, which is a significantly difficult task compared to that of residual networks, which
simply need to predict the displacements and adding the initial positions. Because the neural network
achieves similar levels of accuracies between training, dev, and test sets, it is unlikely to be overfitting
the training set.

10 T T T T IFC_S 'E
=== FC-1
10.2 = Res-7 |

— Res-1

Validation Loss (MSE)
S

1 1 1 1 1 -H

0 10 20 30 40 50 60
Epoch Number

Figure 4: Validation accuracy for FC-1, FC-5, Res-1, and Res-7 networks over training epochs.

To qualitatively inspect and verify that accurate predictions are made, I have rendered an example
pair of images from both predicted and simulated trajectories from the same input snapshot in Figure
5. From visual inspection, we see that the results are excellent; the two images in Figure 5(b-c) look
qualitatively similar with no striking difference.

Many
Contacts

No
Contacts

Figure 5: A comparison of images rendered from (a) input snapshot, (b) simulated (computed)
snapshot after 10° time steps, and (c) predicted snapshot. Particle color indicate number of contacts.

It is worth pointing out that approximately the same level of loss was achieved by all residual networks.
A possible explanation for the same level of accuracy may be the size of the problem; predicting
the positions of 8788 particles may simply not require a network with over 50,000 nodes. Figure 4
shows that even the shallowest Res-1 network achieves minimum loss in as early as 15 epochs. The
advantage of deeper neural networks may become useful for systems with larger particle numbers up
to O(10°%), which is closer to the research-scale size used for large scale dynamic simulations used
for studying macroscopic phenomena.

5.2 Randomness of Simulations as a Proxy for Bayes Error

The convergence of all errors from residual networks in Figure 4 naturally leads to the question of
what is the level of theoretical minimum error. Simulations are always conducted by computers, and
human-level error is unable to serve as a proxy for Bayes error in this task. As previously mentioned,
however, the simulations in this work involve combinations of stochastic Brownian motion and
deterministic interaction forces between particles, which result in largely deterministic yet mildly
stochastic behaviors as a whole. Therefore, the extent of randomness can be quantified by repeatedly
running simulations from a single snapshot with different random seeds, as described in Figure 6.
These simulations will result in slightly different realizations of future states, whose MSE can be
compared across different realizations to estimate the Bayes error as the mean degree of randomness.

[nitial
State
A
O,

Compute futures S
using different s
random seeds
U,
Different
Future
States

Compare positions to quantify degree of
randomness (signal-to-noise ratio)

Q)\V

Figure 6: Schematic of Bayes error quantification methodology. Different random seeds in simulations
result in slightly different futures.

To quantify the minimum error via this methodology, ten initial states were randomly chosen and
two future states were respectively simulated and the MSE between each pair was computed. A
summary of results are shown in Table 2. It is apparent that the neural network is able to achieve

Mean-Squared Error
Model Mean SD
Simulations 1.90e-05 8.90e-06
Res-7 2.48e-05 1.11e-05

Table 2: Comparison of randomness in simulation with error from neural network-generated predic-
tions. Error of neural networks is almost similar to randomness in simulations.

errors near the randomness of the simulations (i.e. Bayes error). This explains the identical level of
accuracy obtained from networks with different levels of error and further drives the need to expand
the applicability of the current technique for predicting futures of larger simulation systems.

6 Conclusions and Future Work

I have successfully developed a deep neural network for predicting future states of Brownian Dynam-
ics simulations based on a current state. I have discovered that utilizing a residual network architecture
to focus on displacement significantly improves accuracy with errors close to the Brownian noise
of simulations. This performance is driven by allowing the neural network to focus on computing
displacements to update the initial position via residual connections.

Future work should focus on visualization and interpretation of what and how each residual block is
computing displacement. For generalization of this task, future work should also extend the current
architecture for larger and variable number of particles for practical applicability in computational
research environments. Finally, the possibility of recursive aging should be investigated for practical
use as well; the ability to repeatedly feed output predictions into the input layer to make predictions
of even further futures will significantly widen the usefulness of the current methods.

7 Contributions and Acknowledgements

This work was solely completed by Brian K. Ryu for completion of the final project of CS 230. 1
would like to acknowledge the authors of [3] for the proprietary code for generation of the dataset.
I would also like to acknowledge Ahmad Momeni as well as the CS 230 teaching staff for helpful
discussion and guidance for this project.

References
[1] Chen, Jim C., and Albert S. Kim. "Brownian dynamics, molecular dynamics, and Monte Carlo modeling of
colloidal systems." Advances in colloid and interface science 112.1-3 (2004): 159-173.

[2] Erban, Radek. “From molecular dynamics to Brownian dynamics." Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences 470.2167 (2014): 20140036.

[3] Zia, Roseanna N., Benjamin J. Landrum, and William B. Russel. "A micro-mechanical study of coarsening
and rheology of colloidal gels: Cage building, cage hopping, and Smoluchowski’s ratchet." Journal of Rheology
58.5(2014): 1121-1157.

[4] Anderson, Valerie J., and Henk NW Lekkerkerker. "Insights into phase transition kinetics from colloid
science." Nature 416.6883 (2002): 811.

[5] Plimpton, Steve. "Fast parallel algorithms for short-range molecular dynamics." Journal of computational
physics 117.1 (1995): 1-19.

[6] Gawehn, Erik, Jan A. Hiss, and Gisbert Schneider. "Deep learning in drug discovery." Molecular informatics
35.1 (2016): 3-14.

[7] Lo, Yu-Chen, et al. "Machine learning in chemoinformatics and drug discovery." Drug discovery today 23.8
(2018): 1538-1546.

[8] Wainberg, Michael, et al. "Deep learning in biomedicine." Nature biotechnology 36.9 (2018): 829.

[9] Noé, Frank. "Machine Learning for Molecular Dynamics on Long Timescales." arXiv preprint
arXiv:1812.07669 (2018).

[10] Wang, Han, et al. "DeePMD-kit: A deep learning package for many-body potential energy representation
and molecular dynamics." Computer Physics Communications 228 (2018): 178-184.

[11] Goh, Garrett B., Nathan O. Hodas, and Abhinav Vishnu. "Deep learning for computational chemistry."
Journal of computational chemistry 38.16 (2017): 1291-1307.

[12] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016.

