PyTorch YOLOvV3 Object Detection for Vehicle Identification

Tesa Ho, Mohith Ravendra
CS230, Stanford University
{tesaho, mohithr} @ stanford.edu

Abstract

Detecting real world vehicle objects captured from car
mounted cameras requires manual labelling of video imag-
es. Previous vehicle object detection papers such as the
winners of the 2018 Al City Challenge [1] used a training
set of over 4,500 hand labelled images. In this paper, 1
attempt to automate this task by applying transfer learning
to a YOLOv3 model trained on Imagenet and then re-
trained on a set of stock car images and a small subset of
hand labelled images taken from front-mounted dashboard
camera videos. The mean Average Precision (mAP) of the
validation set is used to determine the effectiveness of mod-
el vehicle classification. There is a significant variance
issue between the validation and training set because the
video images are taken in 1) various weather and lighting
conditions and 2) the stock images have different image
perspectives. The experimental results demonstrate that
the YOLOv3 model can reach an overall 16.07% mAP after
60 epochs of training and can identify classes of vehicles
that had few training examples in the dataset.

Keywords:

Object detection, vehicle detection, YOLOvV3, deep learn-
ing, convolutional neural network.

1. Introduction

Deep learning vehicle detection can be split into two
different model strategies: 1) a single shot object detector
(SSD, YOLO, YOLOvV2, and YOLOvV3) and 2) a region-
based object detector (R-CNN, Fast R-CNN, and Faster R-
CNN). Recent papers such as Tang et al [1] and Sang et al
[2] demonstrate the success that YOLOV2 has had on object
detection in the 2018 AI City Challenge. In this paper, a
PyTorch version of Redmon’s [3] YOLOV3 model is ap-
plied to vehicle images from the Nexar Challenge 2 dataset,
NEXET [4]. The models were pre-trained on Imagenet
data and then trained on a custom dataset consisting of the
Stanford car data set [5] and the Nexar Challenge 2 vehicle
dataset, NEXET. The trained models were then evaluated
using the mean average precision metric (mAP) on a ran-
dom sample of NEXET vehicle images.

'
confidence score '
(odjoctnossebox) | !

+*
o A

confidence score | |
{objectnessebox) | 4

=
'

YOLO

Figure 1. YOLO produces SxS predictions with B bounda-
ry boxes. [6]

2. Related Work

Region based object detection model, R-CNN[7], were
the first deep learning object detection models that were
successfully applied to vehicle detection. Fast R-CNN[8]
improved on R-CNN by using a feature extractor (CNN) to
extract features over the whole image thereby speeding up
the training and inference process. Faster R-CNN[9] further
improved the training and inference speed and proved to be
usable for real-time vehicle detection in reference [10].
Redmon et al. introduced a single shot detector model
YOLO in 2016 [11] which further greater reduced the
speed of detection and improved the accuracy. YOLOvV2
[12] was an improvement over the original YOLO model
with additional model features such as batch normalization,
multi-scale training, dimensional clustering, and a high res-
olution classifier.

3. Dataset

The Stanford car dataset consists of 8,144 stock car im-
ages that are well lit and clearly identify the vehicle. The
original Stanford car dataset did not have vehicle classifica-
tion labels so each image was manually relabeled. The da-
taset omitted images of buses, minibuses, trucks, and mo-
torcycles.

The NEXET dataset consists of 1,258 car images taken
from videos captured from front mounted cameras and re-
flect real world data. The NEXET images include night,
twilight, and daytime images taken in weather conditions

1

that include rain and snow [Figure 2]. The original NEXET
sedan images labels included suvs and hatchbacks labels
and were manually re-labelled to reflect the new classes.

The training set consists of all 8,144 Stanford car imag-
es and 811 NEXET images (96% of all images). The
NEXET training images were randomly selected with the
same class distribution as the original NEXT distribution.
The validation set consists of 377 NEXET images random-
ly selected with the same class distribution as the full
NEXET data set. The vehicle classes included are: sedan,
hatchback, bus, pickup, van, truck, and suv.

Figure 2: Stanford car image (left). NEXET car image
(right).

There are nine vehicle classifications that are tested: sedan,
hatchback, bus, pickup, minibus, van, truck, motorcycle,
and suv. The training set does not include examples of
minibus and motorcycle.

Train Validation

Stanford Nexet Total %] Nexet %]
sedan 4,851 754 5,605 58.5% 247 52.9%
hatchback 554 53 607 6.3% 17 3.6%
bus 0 60 60 0.6% 19 4.1%
pickup 593 92 685 7.2% 30 6.4%
minibus 0 0 0 0.0% 0 0.0%
van 541 248 789 8.2% 81 17.3%
truck 0 102 102 1.1% 33 7.1%
motorcycle 0 0 0 0.0% 0 0.0%)
SUvV 1,605 123 1,728 18.0% 40 8.6%
Total 8,144 1,432 9,576 100.0%) 467 100.0%

Figure 3. Class image count for training and validation
dataset.

3.1 Pre-processing

The following pre-processing steps were utilized:
e pad each image to a square
e resize each image to 416 x416.

The colors of each picture were augmented for satura-
tion=1.5, exposure=1.5, and hue=0.1.

4. Methodology

The PyTorch YOLOv3 model used in this paper is
based on the Darknet-53 YOLOv3 by Joseph Redmon and
Ali Farhadi [3]. YOLOV3 is an object detector that splits

an image into a grid and predicts one object per grid cell.
Each grid cell then predicts B number of boundary boxes
for an object and every boundary box is given a box confi-
dence score. Only one object is detected per grid cell along
with the conditional class probabilities. A class confidence
score is then calculated by multiplying the box confidence
score by the conditional class probability. YOLOV3 pre-
dicts an objectness score for each bounding box using lo-
gistic regression. An objectness score of 1 is given to the
bounding box prior that has the highest overlap with the
ground truth object. No loss is assigned to a bounding box
prior if the prior does not overlap with a ground truth ob-
ject.

Type Filters Size Output
Convolutional 32 3x3 256 x 256
Convolutional 64 3x3/2 128 x 128
Convolutional 32 1x1

1x| Convolutional 64 3x3

Residual 128 x 128
Convolutional 128 3x3/2 64 x64
Convolutional 64 1x1

2x| Convolutional 128 3 x3

Residual 64 x 64
Convolutional 256 3x3/2 32x32
Convolutional 128 1 x1

8x| Convolutional 256 3 x3

Residual 32 x 32
Convolutional 512 3x3/2 16x16
Convolutional 256 1 x 1

8x| Convolutional 512 3x3

Residual 16 x 16
Convolutional 1024 3 x3/2 8x8
Convolutional 512 1 x1

4x| Convolutional 1024 3 x3

Residual 8x8
Avgpool Global
Connected 1000

Softmax

Figure 4. YOLOV3 DarkNet-53 architecture [3].

The loss function is a sum squared of error between the
predictions and ground truth is composed of the classifica-
tion loss, localization loss, and confidence loss. Duplicate
boxes are removed through non-maximal suppression. Un-
like the original YOLO model, the final softmax function is
replaced with individual logistic classifiers that utilize a
binary-cross entropy loss function to predict classes. This
allows for multiple labels to be assigned to a bounding box

s?2 B

Moura 3 317 [(2i — 20)* + (i - 9)°]
i=0 j=0
s2 B i 2 = 2
+Amrdzzlg? [(Vwi = Vwi) 5 (\/—’:_ \/ hi)]
i=0 j=0
s2 B) ol
+> 31 (ci-¢)
i=0 j=0
g2 B) o o
N W 0P (ci - &)
i=0j=0

s2 '
+3°1 ST (pile) - Bi(e))?
i=0

cEclasses

Figure 5. YOLOV3 loss function [3].

4.1. Hyperparameters

The following hyperparameters were optimized along
the following ranges using the validation set mAP as the
evaluation criteria:

e [earning rate: [0.00001, 0.0001, 0.0005]
e Non-maximal suppression threshold: [0.3, 0.5, 0.8]
e Confidence threshold: [0.01, 0.05, 0.1]

The confidence threshold and non-maximal suppression
threshold were selected as hyperparameters as they filter the
number of bounding boxes evaluated before the IOU calcu-
lation. The learning rate was chosen to adjust the training
loss speed.

Due to compute constraints, the hyperparameter models
were tuned on smaller epoch sets. There is a fairly high
variance between the training set and validation set because
of the image differences. Images were padded and resized
to a 416 x 416 shape.

Table 1. Model parameters

Batch normalization Yes
Batch size 6
Multi-scale training Yes
Momentum 0.9
Decay parameter 0.0005
Learning rate 0.0001
Confidence threshold 0.05
NMS threshold 0.5
I0U threshold 0.5

4.2. Set-Up

Training was done primarily on a NVIDIA GeForce
GTX 1070 with 16GB memory on Ubuntu 18.04 using Intel

core 17 8th generation CPU.

5. Results

Training Loss
160
140
120
100
80

Loss

60
40
20
0 "
VS PP PP PP I F SR>

Batches

Figure 6. Training loss.

Validation mAP
0.18

0.16
0.14
0.12

01

mAP

0.08
0.06
0.04
0.02

Figure 7. Validation mAP.

Using the standard IOU_0.5 benchmark, the sedan class
had the highest mAP score. The model classified hatch-
backs, pickups, vans, and suvs well at IOU_0.5. There
were no minibus or motorcycle classification which was
expected since the training set did not have any examples.
There were only 60 bus training examples which may have
contributed to the lack of classification of busses.

IOU_0.25 had the highest total mAP score of 0.1720.
At this threshold, truck, suv, and hatchback reached their
maximum mAP score.

The training loss moved close to the minimum within
the first 20 epochs and oscillated there for the remainder of
the epochs. The validation mAP peaked at 0.1607 at the 61
epoch. The sedan mAP value of 0.5040 for IOU_0.50 is on
par with the YOLOvV3 mAP results on the COCO dataset.

mAP
IOU_0.005 10U _0.25 10U_0.50 I0U_0.75 IOU_0.9!
sedan 0.6125 0.5916 0.5040 0.1685 0.0000
hatchback 0.0756 0.1406 0.1406 0.0867 0.0028
bus 0.0000 0.0000 0.0000 0.0000 0.0000}
pickup 0.0456 0.0542 0.0617 0.0063 0.0000}
minibus 0.0000 0.0000 0.0000 0.0000 0.0000}
lvan 0.1916 0.1855 0.1937 0.1429 0.0000}
truck 0.1088 0.0971 0.0900 0.0387 0.0000}
motorcycle 0.0000 0.0000 0.0000 0.0000 0.0000
suv 0.1353 0.1353 0.1353 0.0813 0.0000
I@ 0.1670 0.1720 0.1607 0.0749 0.0004]

Figure 8. Class and total mAP with varying IOU thresholds.

5.1. Error Analysis

The images that had mAP less than 1 and misclassified
objects can be attributed to:

a) Poor lighting conditions.

Figure 9. Night image with incorrect bounding boxes.

b) Lack of training objects.

i WME&W =

Figure 10. No motorcyle or scooter training examples.

c) Perspective issues.

=

!y Van
~ Vahdan gedan~»=
-

Figure 11. Suv images from the rear were mislabeled as a
sedan and van.

d) Poor image visibility.

e,
sedan;i. v,

. sedansedan.
o -

Figure 12. Rain on windows with light glare.
6. Conclusion

This paper has illustrated that transfer learning with
YOLOV3 is a viable solution for vehicle detection given
that the training set contains a high number of class samples
with the same image quality as the validation set. The se-
dan IOU_0.5 mAP score of 0.5040 is in line with the
COCO scores provided by Redmon [3].

In order to avoid hand labelling additional video imag-
es, data augmentation such as scaling, flipping, brightness
variation, perspective transform, and image sharpening on
minority classes could be used to enhance the training set.

7. Contributions

Tesa Ho was responsible for obtaining the Stanford data
set, hand labelling the Nexar data, data analysis and split,
YOLOV3 model build and training, data analysis, final re-
port and presentation. Mothith Ravendra was responsible
for obtaining the Nexar data.

Erik Lindernoren’s git repository [14] was used as the
base reference for the PyTorch implementation. Code used
in this project can be found here
https://gitlab.com/cs230/vehicle tracking/.

A big mahalo to Patrick Cho, teaching assistant extraor-
dinaire, who was an amazing resource through this project.

References

[1] Z. Tang, G. Wang, H. Xiao, A. Zheng, J.N. Hwang. “Single-camera vehicle tracking and 3D speed estimation based on
fusion of visual and semantic features”. 2018 AI City Challenge.

[2] J. Sang, Z. Wu, P. Guo, H. Hu, H. Xiang, Q. Zhang, B. Cai. “An Improved YOLOvV?2 for Vehicle Detection”. Sensors De-
cember 2018.

[3]J. Redmon, A. Farhadi. “YOLOv3: An Incremental Improvement”, University of Washington. 2018.

[4] Nexar NEXET dataset. https://www.getnexar.com/challenge-2/

[5] Stanford cars dataset. https://ai.stanford.edu/~jkrause/cars/car_dataset.html

[6] J. Hui. “Real-time Object Detection with Yolo, YOLOv2, and now YOLOv3”. www.medium.com. 2018.

[7] R. Girshick, J. Donahue, T. Darrell, J. Malik. “Rich feature hierarchies for accurate object detection and semantic segmen-
tation”. 2014 IEEE Conference on Computer Vision and Pattern Recognition, June 2014. p 580-587.

[8] R. Girshick. “Fast R-CNN”. 2015 IEEE Conference on Computer Vision and Pattern Recognition, December 2015. p
1440-1448.

[9] S. Ren, K. He, R. Girshick, J. Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Net-
works”, NIPS 2015.

[10] S. Azam, A. Rafique, M. Jeon. “Vehicle pose detection using region based convolutional neural network™. International
Conference on Control, Automation, and Information Sciences (ICCAIS). October 2016. p 194-198.

[11] J. Redmon, S. Divvala, R. Girshick, A. Farhadi. “You only look once: Unified, real-time object detection”. June 2016. p
779-788

[12] J. Redmon, A. Farhadi. “YOLO9000: Better, Faster, Stronger”. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). July 2017. p 6517-6525.

[13] J. Hui. “What do we learn from region based object detectors (Faster R-CNN, R-FCN, FPN)?”. www.medium.com.
2018.

[14] https://github.com/eriklindernoren/PyTorch-YOLOv3

