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Abstract

De novo protein design is a new field in protein engineering and computational
biophysics, in which the complete sequence and structure of protein molecules can
be specified in silico. However, current methods are limited to fairly simple protein
architectures, and better tools for protein design are needed to access new protein
folds and allow for faster iteration in the design process. One common challenge is
the ability to detect and improve poorly designed protein "loops." Here, I report
two deep neural network models that are able to capture protein secondary structure
and detect which residues participate in the loops to an accuracy of 0.88. These
models are differentiable and promise to integrate well with other newly developed
tools for generating and discriminating protein structure designs.

1 Introduction

The field of de novo protein design has experienced significant breakthroughs over the last ten years [1].
We have attained the ability to specify protein backbones that are realistic (referred to as backbone
design) as well as design side-chain sequences onto these backbones that fold to the designed
structure (sequence design). These steps are accomplished with the aid of Monte Carlo optimization
algorithms, which depend on an accurate scorefunction to evaluate and rank designs [2]. While
existing scorefunctions are fast and effective for calculating higher-level thermodynamic properties
of protein structures, they fail at detecting small local deviations that can have a disproportionate
effect on global protein folding. As a result, current efforts at backbone and sequence design are
case-specific, highly empirical, and not automated, requiring laborious manual curation and ranking
to discern valid backbones and sequences [3]. A method for evaluating protein structures for their
validity or "realistic-ness," on metrics that are not captured by thermodynamic scorefunctions, would
significantly increase the rate of development in de novo protein design.

Such a method would be most useful if focused on protein structural "loops." Loops are regions of
protein structure that do not take on well-defined secondary structure such as a-helices or 3-strands,
and are often the most destabilizing and hardest to design properly. Currently, the algorithm used to
define secondary structure in a 3D protein structure (stored in a PDB file) is DSSP [4], which is not
a differentiable function. Deep learning is well suited to solving this task more efficiently, due to
the difficulty of representing complex 3D protein structural data in a standard regression model and
the wide variety of tasks it has proven effective for. A fully differentiable pipeline that could replace
DSSP by detecting loops in PDB files, evaluating loops for their "realistic-ness," and be integrated
with other generative and discriminative models for protein design, would be an important tool for
ranking and evaluating computationally generated protein designs. Here, I propose to develop a
differentiable loop detector for protein structures from PDB files.

My central hypothesis is that the universe of naturally occurring protein structures defines a distri-
bution for allowable protein folding geometries, and that the structural data uploaded to the Protein
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Data Bank (PDB) represents an adequate sample from this distribution. I propose to develop a model
to detect loops in proteins in a differentiable function. This detector will enable downstream work to
evaluate Monte Carlo-generated protein structures on the basis of their "realistic-ness," or similarity
to native protein structures. Doing so will enable more rapid prototyping of protein designs and
successful enzyme engineering outcomes.

The input to the detector model is a 64 x 64 symmetric matrix of distances (in RT). This is a
representation of a protein structure, which is simply a polymer with a particular 3D conformation,
or fold. The elements of the matrix are calculated as pairwise distances between the Ca atoms
of each residue of the protein polymer. The detector model itself has been implemented here as a
fully-connected deep neural network and as a convolutional neural network. These models are used
to predict, for each of the 64 residues represented, whether that residue is part of a loop.

2 Related work

This work has not been previously attempted. Successful deep learning methods for predicting protein
secondary structure from sequence have been reported [5], but these models are involved in learning
the mapping between protein sequence and protein structure. Instead, my model is intended to be
used in a design framework, with a known sequence and structure, but with unknown structure/design
quality. DSSP [4] is an effective secondary structure labeling algorithm that takes protein structures
as input, but it is not differentiable.

3 Dataset and Features

Data has been obtained as a non-redundant subset of all experimentally determined protein structures
downloaded from CATH [6], a protein structure classification database. I used the s40 download,
which filters out any structures from proteins with greater than 40 percent sequence identity, preventing
excessive redundancy in the dataset. This download contains 30,745 Protein Data Bank (PDB) files,
each of which contains a 3D structure of a protein of variable length.

Figure 1. (a) A representative protein structure from the PDB. Loops are depicted as
wires, whereas helices are depicted as ribbons and strands as arrows. (b) A
representative 2D pairwise distance matrix for a 64-residue protein structure.

Data representation is an important consideration for the complex 3D structural data I will be working
with. I will represent 3D structural data for these proteins as a 2D pairwise distance matrix between
each residue of the sequence in the protein. In practice, this is a symmetric positive semidefinite
matrix with one channel (depth 1). This representation lends itself well to standard convolutional
approaches, and has already been shown to be sufficient for capturing global structural information
[3, 7, 8]. For labels, I generated DSSP secondary structure definition labels for each residue in the
protein, labeling a residue 1 if it belongs to a loop and 0 otherwise. Thus, for a protein of length L, I

generate a pairwise distance matrix representation of the 3D structure in R“* ' and a label vector in
{0,1}L.



Proteins can be of variable length, yielding variable size matrices. In order to standardize input
data size, I generated starting data by sliding windows of size 64 x 64 along the diagonal of the
contact map for each matrix, at a stride of 10. In essence, this generates a distance matrix of a protein
fragment, which should be sufficient to capture enough local environment for any given fragment.
These are mapped to the corresponding DSSP label vector. Thus my input data are pairwise distance
matrices in R%4*64 and my label vectors are binary vectors in {0, 1}%%. The data was not normalized
because we want to preserve true structural information and physical distances.

This yielded a total of 223,500 data examples, which I partitioned randomly 80-10-10 into train-dev-
test sets to yield 178,800 training examples, 22,350 dev examples, and 22,350 test examples. Since
local protein structure is generally independent of other local fragments, and the random partition
preserves the structure of the PDB data, this is a valid partition.

4 Methods

My approach is to directly predict binary labels (loop vs. non-loop) for each residue in the input. Thus,
for each 64 x 64 input "image," DSSP generates a binary vector of ground truth labels i € {0, 1}54.
I used two approaches to predict these y: a standard fully connected deep neural network, with four
layers (FCNN), and a convolutional neural network (CNN). These models are implemented in the
Keras framework [9]. The final layer of these networks is a dense layer with 64 output neurons with a
sigmoid activation. Together these produce a prediction ¢ € [0, 1]%4

To train these models, I minimized the standard binary cross-entropy loss between the predicted,
encoded vector ¢ and the ground truth label y. The objective function is shown here for m examples

and a label/prediction vectors of length 64. The optimal parameters §* are the parameters that
minimize the loss.
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5 Experiments/Results/Discussion

For the FCNN model, training was carried out on AWS using a p2.xlarge instance. Hyperparameters
considered during the training process included learning rate, minibatch size, the number of epochs
to train for, and the overall model architecture (number of layers and number of neurons in each
layer). Random weight initializations were used throughout. Initially, I used default hyperparameters
of learning_rate = 0.0001, minibatch_size = 32, and num_epochs = 20. The number of
epochs was lower initially because I wanted to iterate faster and find more global errors, with more
refined debugging later with more deeply trained models. For this project, I also used the standard
evaluation metric of accuracy, as it incorporates both false positives and false negatives, neither of
which is especially detrimental over the other for this use case.
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The initial model architecture was a three-layer neural network, with layer sizes of 256, 128, and 64
and ReLU activations. The initial input was unrolled from a 64 x 64 matrix to a vector of length 4096.
This model (model A) achieved accuracy on the training set of 0.5850, and accuracy on the validation
set of 0.5835, suggesting that the model suffers from high bias and is underfitting the training data
(Table 1). The loss largely stopped decreasing after just a few epochs, suggesting that early stopping
was not a cause of underfitting (Fig. 2A).

Next, I tried increasing the size of the model, using more neurons per hidden layer, with layer sizes
of 4096, 1024, and 64. This model (model B) yielded training set prediction accuracy of 0.7100
and validation set prediction accuracy of 0.7095 (Table 1). Again this suggests high bias and low
variance, and the loss stopped improving significantly after just a couple of epochs, suggesting that
the underfitting is not due to early stopping (Fig. 2B). These results were a significant improvement,
but I wondered if it was possible to achieve even better accuracy.

Next, I tried to deepen the network, training a four layer model with layer sizes 256, 1024, 256,
and 64, again with ReLLU activations (model C). This model achieved much greater accuracy on
the training set, with an accuracy of 0.7314, and accuracy of 0.7292 on the validation set (Table 1).
Encouragingly, the rate of improvement of the loss did not seem to drop off as quickly within 10
epochs (Fig. 2C), suggesting that longer training would produce better accuracy. Altering learning
rate to be 0.001 also helped with improving accuracy. While the accuracy is significantly improved
and I already expect it to be useful at this stage, I was unsure how to address the underfitting issue.
I also trained much larger models, with thousands of hidden neurons and more layers, using other
optimization algorithms such as Adam, but these models did not outperform this model. Using
the same architecture, I trained again but for 1000 epochs (Final FCNN). This yielded the highest
accuracy yet, 0.8412 on the training set and 0.8393 on the validation set. Observing that the validation
loss and accuracy generally follow the trend of the training loss and accuracy, this suggests that the
choice of loss function is good and that it allows generalizable training (Fig. 3A). I further observed
that the validation accuracy had not yet begun to decrease when training was stopped after 1000
epochs, suggesting that the model could be trained for even longer, but there were limited resources.
Variants of the model trained with different minibatch sizes did not yield better performance.
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For the CNN model, training was carried out on AWS using a p2.xlarge instance. The same
hyperparameters were varied as with FCNN training. Random weight initializations were used
throughout. The model architecture that was chosen was simple and based on that used by Eguchi
and Huang [7]. Initially I observed fairly poor accuracy for this model D (0.6679) which held for
various alterations of model architectures, the hyperparameters, and optimization algorithms (Fig.
2D). Error analysis by viewing predictions for a few randomly selected training examples showed
that the model was simply predicting *0’ for all residues, or non-loop. This was surprising because
the dataset does not suffer from class imbalance; the model was able to achieve accuracies around 0.6
by simply predicting a single class for all residues of all examples.

To investigate more closely, I examined the activation outputs of each layer of the model. Upon
closer inspection of the activations of each layer, I noticed that the activations tended to have some
extreme values and speculated that perhaps batch normalization could be used to better handle the



layer activations. I applied batch normalization both before and after each, as there is controversy
as to which is more effective in practice, and found that batch normalization after the nonlinearity
is more effective. This yielded initial accuracies of 0.7950 (training) and 0.8070 (validation) after
just ten epochs of training, which was encouraging. Using the same hyperparameters that had been
optimized for the FCNN, I then trained for 1000 epochs and achieved accuracies of 0.8805 (training)
and 0.8811 (validation), the best accuracy yet observed for any model. Interestingly, the validation
losses and accuracies are very close to those for the training set throughout, suggesting that the model
(as did earlier versions) suffers from high bias and low variance. However, training larger and more
complex convolutional networks did not improve performance; in fact, many of these experimental
models performed worse than the simpler model, even on the training set.

Finally, after model iteration and training, I evaluated performance of the Final FCNN and Final
CNN models on the test set, which had not been used at all during training, to preserve the validity of
the inferential predictions made on the test set. I was able to achieve accuracies of 0.8405 for the
Final FCNN model and 0.8822 for the Final CNN model (Table 1), showing the model generalizes
well and has learned the distribution.

Table 1. No. of Batch Training Validation Test
parameters Normalization? | accuracy accuracy accuracy
No #

Model A Dense: 256, 128, 64 1,089,984 10 0.5850 0.5835
Model B Dense: 4096, 1024, 64 21,042,240 10 No 0.7100 0.7095
Model C Dense: 256, 1024, 256, 64 1,590,848 10 No 0.7314 0.7292
Final FCNN Dense: 256, 1024, 256, 64 1,590,848 1000 No 0.8412 0.8393 0.8405
Model D 7x7@32-Pool2, 1,773,376 5 No 0.6626 0.6679

4x4@64-Pool2,
4x4@128,
4x4@256-Pool2,
1x1@512-Pool2,
1x1@512-Pool2,
Dense: 256,512,64,
ReLU activations

Final CNN 4x4@8-s2, 610,344 1000 Yes 0.8805 0.8811 0.8822
4x4@16-s2,
4x4@32-s2,
4x4@64-s2,
1x1@128-s1,
1x1@128-s1.
Dense: 256, 64.
LeakyReLU(0.2) activations

6 Conclusion/Future Work

In conclusion, I was able to train two deep learning neural networks, a fully connected dense neural
network and a convolutional neural network, to predict residue-wise secondary structure labels (loop
vs. non-loop) to accuracies of 0.88 (Table 1). These networks are fully differentiable and could
potentially be used in a computational protein design framework to detect and eventually evaluate
the quality and robustness of computationally generated loops in de novo protein design. Both
models performed well, although the CNN was able to perform slightly better with fewer parameters,
reaffirming the efficiency of CNNs for these matrix-input problems.

In future work, I hope to further improve the accuracy of the models. With more computational
resources, I would be able to do a more thorough random hyperparameter search, over the ones that
were varied in this study, as well as various seeded random parameter initializations. It would also be
interesting to see if very large models trained for much longer would be more accurate. Finally, I
hope to be able to leverage this model to not only detect protein loops, but evaluate them on torsional
angles and other biophysical properties that are common to real protein loops. In doing so, we would
be able to distinguish poor computational designs that are currently hard to evaluate with the standard
thermodynamic scorefunctions used in computational protein design.

The code for this work is available at https://github.com/alexechu/cs230_loopdetector.
Data and model parameters available upon request.
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