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Abstract

We apply a method of applying semi-supervised learning to data from an online
test preparation site in order to predict students’ GMAT scores. We leverage
a large amount of unlabeled data by using a variational autoencoder to extract
feature embeddings for each student. We compare these feature embeddings
with hand engineered features on a linear regression model and show that the
feature embeddings perform comparably. We also show that combining the feature
embeddings with the hand engineered features increases the performance of the
model with hand engineered features alone.

1 Introduction

Semi-supervised learning leverages patterns found in large amounts of unlabeled data in order to
improve prediction performance on a smaller set of labeled data. It has been shown to be an effective
technique in domains such as image classification [1], natural language processing [2], and acoustic
modeling [3]. In this project, we investigate applying semi-supervised learning to the domain of
education, predicting students” GMAT scores based on their interactions with an online test prep site.
More specifically, we leverage variational autoencoders (VAEs) [4] to extract feature embeddings
from large amounts of unlabeled student interactions and use these embeddings for supervised
learning on a smaller set of labeled data which consists of student reported GMAT scores. We
compare our approach to standard linear regression that use hand engineered features on only the
labeled dataset.

This problem is interesting because we will be able to increase the accuracy of our predictions with
only a small amount of labeled data, which is expensive to collect, by leveraging a large amount of
unlabeled data. From a practical standpoint, more accurate predictions on students’ actual GMAT
scores and question difficulty may help the test prep site produce a better experience for their students,
potentially even augmenting their service by helping the students learn more effectively.

The input to our algorithm is the dataset of student practice exam data. The output of our algorithm is
the predicted GMAT scores of the students.

2 Related Work

Drawing from the success of deep learning in other domains, [5] applies a Recurrent Neural Network
(RNN) to model student learning, achieving state of the art results at the time. They use a one hot
encoding of the students’ questions which we also implement in our initial model. More recently, [6]
use a bidirectional long short term memory (bi-LSTM) model to create embeddings for questions and
students, which we also experimented with in this project.
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Deep learning has also been recently applied more specifically to the domain of grade prediction,
which is very relevant to our task of predicting GMAT scores. [7] introduces GritNet, which also
uses a bi-LSTM model to make predictions on Udacity data. Their technique outperformed standard
logistic regression models, especially in the first few weeks of learning. [8] uses Bayesian deep
learning models to estimate student grades in future courses given grades in prior courses.

Our project mostly follows the approach from [9], where VAEs are used to create embeddings in
a dataset to predict student learning disabilities. They run experiments using both simple fully
connected layers in their network as well as an asymmetric VAE using a convolutional neural network
(CNN) in the encoder and LSTM in the decoder. Our project attempts to take these techniques and
apply them to the context of GMAT score prediction, although, as we show below, we find that a
simpler model performs better for our dataset.

3 Dataset

We use a dataset from TAL Education Group, an online education company that provides online
test prep for various exams including the GMAT. The original dataset consists of 8,681 questions
with category labels (verbal, quantitative, integrated reasoning); 90,831 students; 16,002,324 student-
question interactions consisting of a student, a question, a time the question was attempted and
whether or not the student got the question correct; and 458 students labeled with self-reported GMAT
scores. Out of the 458 students with self reported GMAT scores, 372 used the test prep system
before the date of their reported exam. Out of these 372 students, we consider the 354 students who
attempted at least 50 questions. Similarly, out of the 90,831 overall students, we only consider the
19,841 students that have completed at least 50 questions. The overall number of questions that these
students attempted is 7808.

4 Methods

4.1 Variational Autoencoders

We use a variational autoencoders (VAE) [4] to create feature embeddings for the students in our
dataset. VAEs are generative models that combine variational inference with deep neural networks.
The goal is to maximize P(X), the probability of each input X in our training set, assuming each X
depends on a latent variable z:

P(X) = / Py(X|2)P(2)dz

The latent variable z is what we will use as our student embedding. Here we parameterize P by 6
and represent it as a neural network. We model the prior P(z) = N (2|0, I). The posterior Py(z|X)
is not tractable so we approximate it with an inference network ¢, (z|z):

44 (2l7) = N (2| g (x), diag(og(x)))

where 114(2) and ai(z) are both neural networks parameterized by ¢. Since maximizing the
likelihood directly is also not tractable, we maximize the variational lower bound (derived in [4]):

Eg, (zl2) [log Py (2|2)] — Dz [gs(2|2)||P(2)]

The negative of this expression is the loss function in our algorithm. The first term represents the
reconstruction loss: given an input X, we sample z using ¢4 (z|z) and then maximize Py(z|z). The
second term is a regularization term that pulls g4 (z|x) toward the prior P(z).

4.2 Semi-supervised Learning

Our semi-supervised learning pipeline is shown in figure 1. It consists of two parts. First, we use
the unlabeled student-question interactions as input to a VAE to generate feature embeddings z. The
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Figure 1: Semi-supervised pipeline. (left) Variational autoencoder using unlabeled student interac-
tions. A series of three fully connected layers are used for both the encoder and the decoder. (right)
The latent variable z is used as a feature embedding for supervised learning on the smaller labeled
dataset to predict the GMAT score.

VAE uses three fully connected layers as both the encoder g4(z|x) and the decoder Py(z|z). The
encoder uses another set of fully connected layers to generate ji4(x) and o4 (x). We use these as
parameters to a normal distribution and sample using the reparameterization trick [4] to generate our
embeddings z. Next, we use these feature embeddings for supervised learning on our labeled dataset
to predict GMAT scores. We run experiments that use the feature embeddings alone to make the
predictions as well combining the embeddings with our original hand engineered features.

4.3 Experiment Setup

We originally attempted to model our data similarly to [5] and [9] where each input consists of a
sequence of student-question attempts. In [S], each attempt is modeled as a one-hot encoding of the
questions and in [9], each attempt consists of all features for the student during their attempt of that
question. Since they are trying to predict student disabilities, they use total answer time and the first
input response time as the two features for 25 questions, resulting in a 50-dimensional input for each
student. For our dataset, we experimented with using a one-hot encoding of the questions resulting in
a T * 7808 (where 7808 is the number of questions) dimensional input for each student. We later also
attempted to use the question text to create a question embedding using InferSent [10] resulting in
a T x 4096 dimensional input. Unfortunately, running both formulations through our VAE did not
generate good feature embeddings — they did not improve our results using the standard supervised
learning algorithms, so we did not include them in this write-up.

The above formulation may have unnecessarily forced our VAE to learn the order in which the student
attempted each question, which seems less relevant in the context of predicting final GMAT scores.
Therefore, we ended up taking a simpler approach of modeling each user as a 7808-dimensional
vector where each entry in the vector represents a question. We store 1 if the student’s last attempt at



Table 1: Comparison of Single Grasp Approaches on the Cornell Grasping Dataset

Random Seed | Features RMSE MAE R?

1 Hand engineered 68.5044 52.4286 0.3351
1 VAE 75.4983 56.0000 0.1924
1 VAE + Hand engineered | 68.4418 53.2857 0.3363
2 Hand engineered 49.6560 39.4286 0.2993
2 VAE 52.3450 40.2857 0.2214
2 VAE + Hand engineered | 49.5263 38.4286 0.3030
3 Hand engineered 54.8895 41.5714 0.4161
3 VAE 68.2352 50.2198 0.2231
3 VAE + Hand engineered | 51.6582 39.4286 0.4828
4 Hand engineered 67.1884 46.2857 0.2690
4 VAE 65.9329 47.8571 0.2960
4 VAE + Hand engineered | 62.1174 42.7143 0.3751
3 Hand engineered 74.3928 53.4286 0.1935
5 VAE 70.0306 51.2857 0.2853
5 VAE + Hand engineered | 62.1174 42.7143 0.3072

the question was correct, 0 if the student’s last attempt at the question was incorrect, and a dummy
value of -1 if the student did not attempt the question. During training, we ignore the entries the
student did not attempt in or loss function.

Similar to [9], we found from our initial training attempts that the KL divergence term in our loss
function went to zero and we ended up learning the prior for our encoder g4 (z|z) = P(z). This was
also observed in [11] where a warm-up phase of gradually turning on the KL divergence term is
introduced. We follow a similar approach and modify our objective:

Eq, (210 [l0g Py (2|2)] = BDk Llas (2|2) || P(2)]

where [ is linearly increased from O to 1 during the first 100 epochs of training.

We also found that there was quite a bit of variation in our supervised learning results when we
changed the random seed used to generate our training / test set split for our small labeled dataset, so
we ran experiments with a few different random seeds and report all of the results below. Additionally,
in the interest of time, we only used linear regression as our supervised learning algorithm. We also
ran experiments using decision trees, SVM regression, and gradient boosting with similar results, but
these algorithms were more time consuming to tune since they were more sensitive to changes in
hyperparameters.

We calculate the root mean square error (RMSE), mean absolute error (MAE), and R? for each run of
our experiments. For the purposes of evaluating how good a model is, we use R2. For each random
seed, we run a set of three experiments: (1) hand engineered features (total questions attempted, total
practice exams attempted, average score in terms of number of questions the student got correct,
average score for the last 100 exercises, whether or not the student purchased the product, the average
score improvement between the first half of questions the student attempted and the second half) (2)
the VAE generated feature embeddings (3) a concatenation of hand engineered features and VAE
generated features.

5 Results

The results of our experiments are shown in Table 1. Our overall R? scores are low, indicating that
both the hand engineered features and the VAE generated features may not be the best model for
predicting GMAT scores in the dataset. Our VAE generated features generally performs comparably
to the hand engineered features, although there is a bit of variance. However, combining the hand
engineered features with the VAE features seems to increase the R? across the board. This indicates
that we can indeed leverage the large amount of unlabeled data in this dataset to improve the
performance of our supervised learning model. Although most of the improvements of combining the



features are modest, the random seed 4 and random seed 5 runs show that significant improvements
in R? is possible by leveraging the VAE generated data.

6 Conclusion and Future Work

In this project, we explored a method to improve prediction performance of GMAT scores by
leveraging a large amount of unlabeled student interaction data. We used a variational autoencoder to
extract feature embeddings and used these feature embeddings as input to a linear regression model.
Although the R? of our experiments were not very high, they do seem to indicate that we can improve
the prediction performance of a linear model using hand engineered features by introducing VAE
generated features.

Future work on this project could explore using the extracted feature embeddings on other regression
algorithms such as decision trees, SVM regression, or gradient boosting methods. It would also be
interesting to explore different VAE architectures such as ones that include convolution or recurrent
layers.
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