£ (CS230

DeepBug: A hybrid of CNN and RNN approach for software bugs triage

Yuanliang Lu Lucy Gao Dawny Liu
Motorola Mobility Inc. IBM Inc. Motorola Mobility Inc.
lofus@stanford.edu lgao@ibm.com dawny@motorola.com

lofus@motorola.com

Abstract

We propose a deep neural network approach named as DeepBug for
software bugs triage. DeepBug takes the bug report title, description and
logs as input features, and triage that to which software component the bug
belongs to. Deepbug is designed as a hybrid architecture with a CNN and a
RNN running in parallel. The CNN path keeps learning from the bug log file
in a way mimicking manual log analysis by layers, and the RNN path works
on learning the text sequences from bug title and description. The stream of
the two paths are aggregated as the final output as a classifier. Validated by
both public and industry dataset, DeepBug demonstrated an exciting
performance on the benchmark of a BOW model such as [15] [17] [21], and
the RNN model as by Senthil et. al. [24].

1. Introduction

Software bugs are usually managed with a system like JIRA. Each bug report comes with
attributes including title, description and log files. We have been spending a huge effort on the
bugs triage and assign it to the right team for further analysis and get it resolved. In this project
we explored some state-of-the-art deep learning technologies and built a RESTful service called
DeegBug, which works to triage the software bugs automatically and precisely. When a new
ticket comes into JIRA system, DeepBug service predicts that to which software components
might belongs to. The predictions serve as a guideline to move it forward, and reach the right
component as early. A high level view for the DeepBug system design is shown as Figure 1.

Log: (20 x 200 x 5)
< |—ﬂ AN
—

Bug
Datasets

Software
Component
Name

preprocess

Title+Descript: (20 x 200)
RNN (GRU)

i

Figure 1: DeepBug system architecture

This design is based an insight that our software architecture is essentially a stack with multiple
layers and the bug report log is actually a snapshot to the stack run-time. For a given layer in
the stack, the log tends to have a segment with some distinct symptom in the trace. When



expertise analyze the logs he will review the log prints by layers, look for the exceptions and
identify to which layer, which component the bug is happening. So the intuition is that we can
take a CNN to learn the bug’s log stack in the way mimicking manual log analysis by people, the
process could also be similar to image recognition, such as to extract and learn the features
from the logs for different layers of the software stack, and abstract from a high level (later cnn
layers) to classify for the bug to which software component (labeled) it has happened. In the
other hand, the title and description for a bug are descriptive text sequences, and we can take a
RNN model to learn the features from the text context. At the end we aggregate the results from
CNN and RNN and softmax it as the final output. From CNN and RNN path the data stream
comes with same dense after flatten and right before softmax, so we can merge them up. The
output and the cross entropy loss can be expressed as (1) and (2), though the implement are
mostly with Keras frameworks.

y =softmax(C + R) (1)

Ly, y) = -2 ylogy” )

This design of DeepBug is adaptive. For these bugs without a log trace, the path of CNN model is
actually ignored, so it falls back to the path of the RNN model, which is similar to the approach
by Senthil et al. [24] We firstly trained a CNN model (simple as AlexNet) for classification by
bug’s log trace, and separately build a RNN path. We compared the RNN model with GRU v.s
LSTM units, and selected GRU approach which has a better performance of 86.25% accuracy for
top 20 components. Another interest work, we replaced the RNN path with a CNN model, it
works to classify the bugs with only title and description, but the overall performance is not
good as RNN.

2. Related Work

Bug triage is a classification problem, and most of recent related work [15] [17] [19] [21] [25]
took the bug summary/title and description as input features, and learn to identify an
appropriate developer as the owner. We observed that various approaches available in
literature, based the models such as tf, normalized tf, tf-idf, and n-grams. Xuan et. al., 2015 [17]
used tf, and feature selection with naive Bayes, and got an accuracy of 60.40%. S Kim et. al [25]
used a tossing graphs model which achieved a accuracy around 70%. These existing projects are
essentially deploying a bag-of-words (BOW) feature model, and learning to map the bug title
and description to one of the developers (class labels). BOW does not absorb well the syntactical
and sequential information available in the unstructured text. Bhattacharya et. al. [21] used
additional attributes such as product, component, and the last developer activity to target the
developers, and the accuracy is around 74%. More recently we have seen some exploring for
deep learning models for this task, Senthil et. al.,[24] proposed an algorithm based on a deep
bidirectional recurrent neural network model which learns the syntactic and semantic features
from the text description, but the bug logs is not taken into account. In this project, instead
classify for developer we challenge to triage for software component, and we propose a model
with a hybrid CNN and RNN running in parallel, target to learn from both descriptive input and
the log file, which is a structured text information.

3. Datasets and Features

We initially trained DeepBug with public dataset for bug records from project Google
Chromium and Mozilla Firefox, which comes with a total of 240K samples. Each sample is
composed with a bucket of bug title, description and owner, where owner is the email ID of the



developer who had resolved the bug. This dataset turns out not working well, and we switched
to train and validate DeepBug with the industry dataset and our internal data for bug reports
from JIRA system with a total of 200K samples, where we explicitly set the feature ‘owner’ to be
the software component name against which the bug was resolved. We abstract the title,
description, log and component as the key inputs for a given ticket report. The data features
and label are listed as following.

e Title-- This is a summary for the bug, usually it is less than 30 words.

e Description-- A description of what are the scenarios and behaviors from user
experience and or testing observation. This could be more than 300 words.

e Logs—- This can be an attachment such as log files, which is a snapshot to the software
stack, a printed from each layer of the Android software stack.

e Component - This is the actual data label. For a closed ticket, this is the software
component name where the bug was finally fixed. For a new ticket, this means the
component name that DeepBug works to predict for.

The datasets are organized up as .json files. For each bug, the title, description and component
features are wrapped up within a JSON object. The log trace are preprocessed and get wrapped
with a separate JSON object. The .json files are cleansed, such as removing the tabs, the hex code
and URLs. We removed these because they do not contain any valid descriptive next. The text is
then embedded and vectorized with Word2Vector and feed into the models. The whole data
pipeline is illustrated as Figure 2.

Dataset DeepBug model
il CNN .
Data preprocess Z0) 70| Classify
JIRA > .JSON > Cleanse > Word2Vector > > Zanay O ‘ E> Q
Bugs ‘
RN&(GRU)?‘“

Figure 2: The data pipeline

In this pipeline, the vocabulary is pre-compiled with a whole dataset for all the bugs on known
components, and for training purpose we filter out the bugs for top 20 components. The title
and description are vectorized as (20 x 200) dimensional vector. The log file processing is
different. We first split the log tracce into fragments according to the layers of the stack stack. In
this project the software stack is based Android platform and the logs typically contains 5 layers,
known as Android application layer, framework layer, RIL/OEM layer, Android kernel layer,
and baseband layer. Log fragments are vectorized and we stack them up as 20x200x5
dimensional matrices.

4. Methods

With Keras framework we built and trained for three models: 1) CNN for logs learning, 2) RNN
models with LSTM, and 3) RNN with GRU which learn from title and description. The goal is to
classify the new bugs, in another word, it is to predict the probability to which software
component the bug might belongs to. We start the CNN model prototype with an AlexNet design,
it constructs with three convolution layers, get concatenated with a flatten layer, and lastly a
softmax for output. In this model the inputs are 20 x 200 x 5 matrices and we applied a padding
initially and then conv2D(). The CNN model generally works for classifying the bugs for the
given 20 components. We also tried the same CNN model for the dataset of bug title and
description, where we reshaped the input from 20 x 200 to be 20 x 200 x 1, and interestingly it
also works, though the performance, overall accuracy 73.54%, is not so good as compared to



RNN model for that path, learn by title and description. Intuition is that we are actually treating
the text vector as an one channel image, and it can not learn well for the text context
information, so we switch to try out RNN models. Result shows the RNN(GRU) model achieved a
better accuracy performance over the other 2 models. Initially we trained and validated the
CNN and RNN models separately, with public datasets from Chrome and FireFox bug repos,
where the ‘owner’ feature in the dataset are actually the developers’ email IDs. And it turns out
the algorithm does not converge well on the training dataset, and performance is poor, that the
prediction accuracy oscillates at 45%. Our analysis suggest that there is no correspondences in
between the bug and the assignee who had ever worked on that bug and fixed it. Instead, there
is a relation between the software module (we usually call it as component in each layer of the
software stack) and the bugs fixed against it. We switched the training dataset from industry
and our internal JIRA database, where we managed to set the ‘owner’ feature to be the
component name, against which the ticket was ultimately resolved. Our dataset contains 200K
samples, and the learning converges well after 200 epochs of training. We have chosen adam as
the optimizer for both CNN and RNN paths, and used a batch size of 1024. A plot of training loss
per epoch is shown as Figure 3.

1 —— loss 2.25 —— loss

2.2 val_loss val_loss
—— loss — l0ss

204 —— val_loss 400 — val_loss
—— loss — loss

181 — val_loss 175 —— val_loss
loss loss

16 — val_loss 150 4 — val_loss

loss

141 —— val_loss

124

104

0.8 4

0 25 50 75 100 125 150 175 200 0 50 100 150 200 250

Figure 3: The loss for 200 and 250 epochs

5. Results

Validated by the industry datasets and our JIRA dataset, DeepBug has achieved an accuracy of avg
86.25% for the top 20 software components. Figure 4 shows a benchmark with the accuracy as by
SME manual triage, which is generated by a big query into our JIRA dataset.

Triage by DeepBug and SubjectMatterExpert Manual Triage by DeepBug and SubjectMatterExpert Manual
== Triage by DeepBug == SubjectMatterExpert Manual W Triage by DeepBug [l SubjectMatterExpert Manual

100
Launcher App

75 CoreDM

CoreSetup Android
50 Telephony APls
Carrier enablers
25 OEM configure

Bluetooth Provider

Wifi Provider

Network APIs

Accuracy (80000 samples from JIRA tickets)

Calling Features

Accuracy (80000 samples from JIRA tickets) 0 25 50 75 100

Figure 4: Triage accuracy: DeepBug vs SME manual

For the RNN path we compared the performance for RNN(GRU) and RNN(LSTM) models, and
suggest RNN(GRU) reached a better performance for top10 components cross validation and the
average accuracy on test set. Figure 5 shows a plot of the cross validation result for this.



Figure 5: CV result for RNN(GRU) and RNN(LSTM)

6. Discussion

6.1 Classify for software component instead of developer ID. Initially we trained and validated
the CNN and RNN models with open source Chrome and FireFox bug dataset, it turns out learning
does not converge well and performance is not good, such as the prediction accuracy oscillates at
45%. With analysis into the dataset we concluded that in nature there is no distinct connection in
between a developer and the bug fixed by him, because a developer might be working on some
component for a while, and change his working domain then. Instead, there could be a
connection in between the software component name and the bugs fixed against that component,
or by that component team. Base on this intuition we switched to our JIRA dataset and set the
owner to be component, and it is proved that this mapping works well, DeepBug model reached
an accuracy of 86.25% and even with a single CNN model it can get a 75.34% accuracy for triaging
the bugs for top 20 components.

6.2 Switch from CNN to RNN model. We also tried a CNN model for classifying the bugs in the
path with bug title and description. The learning curve converges and we got an average 75.34%
accuracy on test set. Though there is a dramatic oscillation in the loss as observed in the first 50
epochs, with a learning rate 0.0001, as shown in Figure 6. Intuition is that we are actually treating
the text vector as an one channel image, the text vectors could have a variance in between
difference components, so we reshuffled the dataset and it works to smooth out the oscillation,
but the accuracy remains at same level (< 76.00%). To have a model which learns well for the text
information especially for the context, we switched to RNN models for this path.

2.6 1
—— loss —— loss

val_lo: - |
2.4 _loss 22 val_loss

2.2 55
2.04
18
16 16
14
12

1.0 \\\ 124

0 10 20 30 40 50 o 10 20 30 40 50

Figure 6: CNN model for title-description path Figure 7: validation loss and training loss

6.3 Resolve the running gap in between validation loss and training loss. The variance
happens to be high in our early tuning, and we deployed dropout(keepprop=0.6) for each layer



and the variance issue got resolved, however we noticed there was a running gap inbetween
validation_loss and the training_loss from the beginning. A plot of loss illustrates the loss gap
issue as figure 7, we can see the val_loss keeps running below training loss, in another word the
validation loss looks better than training loss. This is not expected and our analysis suggest it is
due to excessive using of dropout. It dropped out quite neurals while calculating the training loss
yet a full network weights calculate the validation loss. We then decreased dropout keep-prop
from 0.6 to 0.4, and have Dropout only for the last layer before Softmax dense, it resolved the
running gap issue.

7. Conclusion and future work

DeepBug model has demonstrated to be promising for our software bugs triage, with an accuracy
at 86.25% for average on the top 20 components. We plan to scale Deepbug for all 300
components, it could save a huge effort which is currently done by subject matter experts (SMEs)
triaging manually. DeepBug can be improved to support for an even big data space, as in this
project the DeepBug model, especially in the CNN path it is actually trained for a software system
where the log file is built like a stack, where it has several distinct layers and corresponding logs.
It might not generalize well for a different software architecture such as the logs does not comes
with traces as per layers.

8. Contribution and Acknowledgments.

In this project Dawny has worked on the analysis and design of a service which works to pull the
dataset from JIRA and convert it into .json files. Lucy from IBM contributed the analysis for
industry bug report structure, query with big data and generate the benchmark for manual
accuracy. Lucy helped to validate the DeepBug model with different dataset. Specially we would
like to thank our mentor Suvadip Paul for the helpful discuss and valuable advice such as for text
vectorizing, developing deep neural network with Keras frameworks, and tuning for
hyperparameters for deep learning models such as CNN and RNN.

Huge thanks to CS230 instructors, Andrew Ng and Kian Katanforoosh, for such a great course.
The source code and test reports can be found at https://github.com/lofus/deepbug

9. References

[1] Zhang X, Zhao ], Lecun Y, et al. Character-level convolutional networks for text classification
[C]. Proceedings of the 29th Annual Conference on Neural Information Processing Systems, 2015.
[2] Kim Y. Convolutional Neural Networks for Sentence Classification [C]. Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP’14), 2014: 1746-1751.
[3] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[4] Hasim Sak, Andrew W Senior, and Francoise Beaufays. Long short-term memory recurrent
neural network architectures for large scale acoustic modeling. In INTERSPEECH, 2014.

[5] Kyunghyun Cho, Bart Van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

[6] Johnson R, Zhang T. Supervised and semi-supervised text categorization using LSTM for region
embeddings [C]. 33rd International Conference on Machine Learning (ICML’16), 2016: 526-534.

[7]1 Zhang S, Zheng D, Hu X, et al. Bidirectional Long Short-Term Memory Networks for Relation
Classification [C]. Proceedings of the 29th Pacific Asia Conference on Language, Information and
Computation (PACLIC’15), 2015: 73-78



[8] Pamela Bhattacharya and Iulian Neamtiu. Fine-grained incremental learning and
multi-feature tossing graphs to improve bug triaging. In International Conference on Software
Maintenance, 2010.

[9] Wang, C. Manning. Baselines and Bigrams:Simple, Good Sentiment and Topic Classification. In
Proceedings of ACL 2012.

[10] Yang, C. Cardie. Context-aware Learning for Sentence-level Sentiment Analysis with Posterior
Regularization. In Proceedings of ACL 2014.

[11] Xin Ye, Hui Shen, Xiao Ma, Razvan Bunescu, and Chang Liu. From word embeddings to
document similarities for improved information retrieval in software engineering. In
International Conference on Software Engineering, pages 404-415, 2016.

[12] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to
attention-based neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

[13] John Anvik, Gail C Murphy. Reducing the effort of bug report triage: Recommenders for
development-oriented decisions. ACM Transactions on Software Engineering, 2011.

[14] Zhang T, Yang G, Lee B, et al. A Novel Developer Ranking Algorithm for Automatic Bug Triage
Using Topic Model and Developer Relations [C]. Proceedings of the 21st Asia-Pacific Software
Engineering Conference (APSEC’14), 2014, 1: 223-230.

[15] Cubranic D, Murphy G C. Automatic bug triage using text categorization [C]. Proceedings of
the Sixteenth International Conference on Software Engineering & Knowledge Engineering, 2004.
[16] Ahsan S N, Ferzund ], Wotawa F, et al. Automatic Software Bug Triage System (BTS) Based on
Latent Semantic Indexing and Support Vector Machine [C]. Proceedings of the Fourth
International Conference on Software Engineering Advances (ICSEA’09), 2009: 216-221.

[17] Jifeng Xuan, He Jiang, Yan Hu, Zhilei Ren,Weiqin Zou, Zhongxuan Luo, and Xindong Wu.
Towards effective bug triage with software data reduction techniques. IEEE Transactions on
Knowledge and Data Engineering, 27(1):264-280, 2015.

[18] Yang G, Zhang T, Lee B, et al. Towards Semi-automatic Bug Triage and Severity Prediction
Based on Topic Model and Multi-feature of Bug Reports [C]. Proceedings of the IEEE 38th Annual
Computer Software and Applications Conference (COMPSAC’14), 2014: 97-106.

[19] Philip J Guo, Thomas Zimmermann, Nachiappan Nagappan, and Brendan Murphy.
Characterizing and predicting which bugs get fixed: an empirical study of microsoft windows. In
International Conference on Software Engineering, volume 1, pages 495-504, 2010.

[20] Ali Sajedi Badashian, Abram Hindle, and Eleni Stroulia. Crowdsourced bug triaging. In
International Conference on Software Maintenance and Evolution, pages 506-510. IEEE, 2015.

[21] Bhattacharya P, Neamtiu I, Shelton C R, et al. Automated,highly-accurate, bug assignment
using machine learning and tossing graphs [J]. Journal of Systems and Software, 2012, 85(10):
2275-2292.

[22] Anvik ], Murphy G C. Reducing the effort of bug report triage: Recommenders for
development-oriented decisions [J]. ACM Transactions on Software Engineering and Methodology,
2011, 20(3): 10:1-10:35.

[23] Park ], Lee M, Kim ], et al. COSTRIAGE: a cost-aware triage algorithm for bug reporting [C].
Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence (AAAT’11), 2011:
139-144.

[24] Senthil Mani, Anush Sankaran, Rahul Aralikatte, Exploring the Effectiveness of Deep
Learning for Bug Triaging, 2016

[25] G. Jeong, S. Kim, T. Zimmermann, Improving Bug Triage with Bug Tossing Graphs, in: FSE,
2009.



