CS230

Describe That GIF

A GIF Description Generator

Chuma Kabaghe
Department of Computer Science
Stanford University
chumak@stanford.edu

Abstract

With the growing popularity of animated GIFs on social media, the need for
improved GIF search is evident. To further this goal, we generated GIF metadata in
the form of natural language descriptions. We used a pretrained resnet-34-kinetics
CNN to encode the GIFs and implemented Long Short-Term Memory (LSTM) and
LSTM with attention decoder models and analyzed their performance on the TGIF
dataset. Previous work on GIF captioning showed the CNN-LSTM was the best
performing model and our results reflected that. Our best performing CNN-LSTM
model outperformed our baseline, Rand CNN-LSTM model set in the TGIF dataset
benchmarks [4] by 90.8% on CIDEr score and 8.8% on METEOR score.

1 Introduction

Animated GIFs have become increasingly popular in recent years and have been shown to be more
engaging than other types of media.[1] [4] Despite their popularity, searching for and finding the
right GIF is tedious and frustrating. This is due to the lack of categorization and rich metadata, which
is often based on hand-tagging and annotation by humans. In an attempt to improve GIF search and
make GIFs more accessible, we implemented and evaluated models that generate GIF descriptions.

Describing animated GIfs is different from the image captioning task because of motion information
involved between frames. Also, movie description datasets leverage professionally annotated descrip-
tive video service (DVS) captions from commercial movies, thus, are not ideal for the GIF description
task because they contain descriptions with contextual information not available within a provided
clip[4]. As a result, GIF description warrants a task of its own on a dataset created specifically for
this purpose.

In this paper, we tackle this task by encoding the GIFS from the TGIF dataset using a 34 layer ResNet
CNN trained on the kinetics dataset and implement LSTM and LSTM with attention decoder models.

2 Related work

There is a surprising dearth of scholarly work on animated GIFs in the computer vision community.
[4] To address this, Li, Yuncheng, et al. created and released the TGIF dataset and its corresponding
paper. In their paper, they establish benchmarks for the dataset, some of which we use to evaluate
our models. A finetuned CNN-LSTM that used weights pretrained on ImageNet-1K class categories
performed the best in their experiments and that motivated our CNN-LSTM model choice.

CNNgs are a standard way of encoding images and videos, and since GIFs are similar to videos in that
they are a sequence of images (albeit a looping one), our model used a CNN model to encode the
GIFs. Hara, Kataoka, and Satoh examined various 3D CNN architectures on video datasets and found

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

the ResNeXt-101 CNN model trained on the Kinetics dataset performed the best. However, it outputs
2,048 dimensional features per image which was too large for the amount of computation resources
we had, so our model used another one of their models, the pretrained ResNet-34 Kinetics CNN.

3 Dataset

We used the TGIF dataset that contains a years worth of GIFs from Tumblr, a microblogging and
social networking website. GIFs in this dataset have been deduped, and do not contain cartoons or
text. We removed all broken links and GIFS containing only a single frame resulting in a dataset
consisting of 90,790 GIFs, split into 82% train, 5.5% dev, and 12.5% test based off the splits provided
by Li, Yuncheng, et al [4]. The training and validation set contain one reference description and the
test set contains three reference descriptions per GIF.

4 Methods

Baseline

We used the Rand CNN-LSTM benchmark for this dataset set by Li, Yuncheng, et al as our baseline.
The Rand CNN-LSTM model used a CNN as an encoder and an LSTM as a decoder. GIFs were
sampled at 10FPS and encoded using a CNN pretrained on ImageNet-1K class categories with
weights randomly intialized and fixed throughout training. The encoder output was fed into an LSTM
to produce descriptions.[4]

4.1 CNN Encoder

For encoding, we used a pretrained ResNet-34 Kinetics CNN by Hara, Kataoka, and Satoh[3]
modified to take GIFs as its input. The CNN produced a 512 dimension vector per image. We split
GIFs into their individual frames and then encoded every 10th frame. Due to computation and time
constraints, we capped the number of frames encoded per GIF to 10, resulting in a 5120 dimension
output vector. This vector became the input to the decoder models.

4.2 LSTM Decoder Model

The feature vector obtained from the encoder was fed as input to the LSTM model. During training,
we modified our label descriptions and target descriptions to include <start> and <end> tokens as
shown below so our model could learn the start and end of a description. Additionally, the correct
word inputs were fed into the LSTM at each time-step, even if it made a mistake before.

Label: <start> a man in fancy attire is pointing at his bow tie .
Target: a man in fancy attire is pointing at his bow tie . <end>

In the evaluation phase, the encoder output was input into the LSTM decoder which was initialized
with a <start> token to mark the beginning of the sentence. After which, the decoder LSTM generated
a description word by word making use of the hidden state and cell state from the previous LSTM
unit until an <end> token was generated to mark the end of the sentence or the maximum sequence
length reached. We used temperature sampling to determine the next word in the description as it
performed better than simple greedy decoding.

<start> El man <end>

|Softmax | |Softmax | ISoftmax | |Softmax |

ResNet-34

mX 5120

lejttl:fgs [LsTM HLST?A [LSTIi/I |- LSTI}/I |

Word |

Word |

Word |

Inut Gifs I I I

<start> El raised

Figure 1: CNN-LSTM Model

We used the pytorch implementation of an LSTM that uses the following equations:
it = o(Wizt + bii + Whih—1) + bri)
= a(Wifmt + b + Wh,fh(tfl) + b;lf)
g = tanh(Wigz, + big + Wigh—1) + brg)
Ot — O—(Wioxt + bio T Whoh(tfl) + bho)
¢t = fic@—1) + itgs
h; = o, tanh(c;)

where h; is the hidden state, c; is the cell state, and x; is the input at time t. h(t_l) is the hidden state
of the layer at time t-1 or the initial hidden state at time 0, ;, f, g;, and o; are the input, forget, cell,
and output gates respectively. o is the sigmoid function [2].

4.3 LSTM With Attention Decoder Model

Inspired by the success of adding attention mechanisms to machine translation models, we imple-
mented an LSTM model with attention. To add attention, we implemented the LSTM using individual
LSTM Cells and added the attention mechanism from Luong et al.[5]. At each time step t, we
concatenated the input feature vector X with the hidden state h; to produce the following attentional
hidden state. Where W, is a randomly initialized weight vector.

hy = tanh(W,[X; hy])

The attentional vector i;t was then fed through a softmax layer to obtain the alignment weight vector
a¢ below, where W, is a randomly initialized weight vector.

a; = softmax(Wyhy)

The alignment weight vector was multiplied by the feature vector X to obtain an attention weighted
input vector. During training, the attention weighted vector, the correct word at the current time step,
and the previous hidden and cell states made up the inputs to the LSTM cell. During the evaluation
phase, the inputs into the LSTM cell were the same except we no longer fed the correct label word
but instead used the previous word generated by the model. We generated a description word by
word, using temperature sampling to determine the best word until an <end> token or the maximum
sequence length was reached.

<start>

LSTM Cell ht

Attention

ResNet-34
CNN

Flatten
features

Input Gifs

Figure 2: CNN-LSTM Cell with Attention

5 Experiments/Results/Discussion

5.1 Setting hyperparemeters

Model batch size | hidden size | learning rate | layers | epochs | dropout | temperature
CNN-LSTM 1000 1024 0.001 1 100 0 0.8
CNN-LSTM with Attention 200 2048 0.001 1 100 0.2 0.8

Table 1: Final model hyperparameters
All CNN hyperparameters used were from CNN source code[3].

Batch size for all models was set to the maximum the GPUs could process. We experimented with one
and two layers for both LSTM models, picking the best performing one. All other hyperparameters
were chosen by sampling from sets of values drawn from source research papers and similar models.

The CNN-LSTM model was run on a single NVIDIA K80 GPU. We used mini-batch gradient descent
with Adam optimization to minimize the cross entropy loss. After 100 epochs, training loss= 0.5464
and perplexity= 1.7270.

The CNN-LSTM model with attention was run on a single NVIDIA Tesla M60 GPU. We used
mini-batch gradient descent Adam optimization to minimize the cross entropy loss. After 100 epochs,
training loss= 0.6188 and perplexity= 1.8567.

5.2 Results

We report the results of our model below and compare them to the baseline Rand LSTM-CNN[4].

Model BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | METEOR | ROUGE | CIDEr
Baseline (Rand LSTM-CNN) 49.7 27.2 14.5 5.2 13.6 36.6 7.6
CNN-LSTM 40.5 22.8 13.1 74 14.8 332 14.5
CNN-LSTM with Attention 374 18.0 8.7 4.5 13.3 26.6 12.3

Table 2: Model Performance Results

The CNN-LSTM model performed the best, outperforming the baseline model by 90.8% (6.9) on
CIDEr score, 8.8% (1.2) on METEOR score and 42% (2.2) on BLEU-4 score. We expected the
model to perform well because the best performing model in the experiments performed Li et al. was
a fine tuned CNN-LSTM model[4].

We expected adding an attention mechanism to the model to improve the scores but that was not the
case, which was surprising. However, the scores obtained by the model with attention were not much
lower than those from the CNN-LSTM model. Thus, we believe further hyperparameter tuning and
running the model for more epochs could result in equivalent or better results from the model.

6 Analysis

We qualitatively evaluate our best performing model the CNN-LSTM and compare its outputs with
that of the CNN-LSTM with Attention model. In this section GT refers to the ground truth description,
CL refers to the output of the CNN-LSTM model and CLWA the outputs of the CNN-LSTM with
attention model.

Example Model Outputs
GT: a guy plays the guitar on stage for his
friends played.] o
CL: a man is playing guitar and singing on GT: a furry. dog turns around and wags its Fall.
stage. CL: a dog is sitting on a couch and wagging
: : : : his tail.
CLwA: a man is playing a guitar and points
tothe crowd Pamsas g CLwA: a dog is in the <unk> on a sofa.
g T ———— . L

: &l 24...
Figure 5: Example Outputs
GT: a man and woman are eating a noodle

Figure 4: Example Outputs
GT: three teenagers are dancing on a glass

stage.

CL: a group of boys are dancing in rhythm.
CLwA: a group of people are dancing and
holding hands.

Figure 6: Example Outputs

and kiss.

CL: a man and woman are kissing in a room.
CLwA: a man and woman are kissing each
other.

\

Figure 7: Example Outputs

The CNN-LSTM model produces good, complete, grammatically correct descriptions and contains
relatively few <unk> tokens indicating our vocabulary is large enough for this task.

The CNN-LSTM model produces more accurate and complete descriptions on shorter GIFs than
longer ones. Which could be because we cap the number of frames encoded per GIF at 10. Thus,
longer GIFs have missing information while shorter ones are fully encoded and contain all the
information.

The model correctly identifies objects in GIFs but sometimes wrongly classifies people’s gender.
Also, the descriptions produced by our model include information about larger background objects
and lack information about smaller more complex details in GIFs such as glasses or fingers. Both of
these failings are due to our choice of CNN. The ResNet-34 CNN we used is only 34 layers deep, a
deeper CNN would be able to recognize these more complex features.

The description generated for the GIF below shows wrongly classified gender and information about
the background but lacks detail about the person’s fingers and glasses.
GT: a woman with glasses talked and moved her fingers.
CL: a man is talking to someone else indoors.

Figure 8: Erroneous GIF

7 Future Work

Based on our results and analysis we highlight some areas of future work:

o Train the CNN-LSTM model on complete GIFs without the 10 frame cap, as that will likely
improve the performance of the model.

e Encode the GIFs using a deeper CNN model like the ResNext-101 trained on the Kinetics
dataset that was shown to have the best performance in the experiments run by Hara, Kataoka,
and Satoh [3].

e Experiment with different types of attention and visualize what the model is attending to
during decoding.

8 Conclusion

Of the two models we presented, the best performing one was the CNN-LSTM which outperformed
the Rand CNN-LSTM benchmark for the TGIF dataset by 90.8% on CIDEr score and 8.8% on ME-
TEOR score. We qualitatively evaluated our models and provided explanations for their shortcomings.
Our experimentation was limited by the amount of time and computation resources available, thus,
we also provide areas of further improvement to our models.

9 Contributions

This project began as a collaboration with Gordon Blake - gblake@stanford.edu in Winter 2019,
however, Chuma was unable to complete it due to illness so they split the project into two separate
individual projects. Chuma and Gordon performed all work until the project milestone ie. the
literature search, proposal, and milestone, as well as working together to modify the pretrained
CNN architecture to work on GIFs. Chuma did all the remainder of the work implementing the GIF
description generation models. Link to GitHub repository.

References

[Bak+16]
[Conl19]

[HKS17]

[Li+16]

[LPM15]

Saeideh Bakhshi et al. “Fast, Cheap, and Good: Why Animated GIFs Engage Us”. In:
CHI. 2016.

Torch Contributors. LSTM. Apr. 2019. URL: https://pytorch.org/docs/1.0.0/nn.
html?highlight=1stm#torch.nn.LSTM.

Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. “Can Spatiotemporal 3D CNNs
Retrace the History of 2D CNNs and ImageNet?” In: arXiv preprint arXiv:1711.09577
(2017).

Yuncheng Li et al. “TGIF: A New Dataset and Benchmark on Animated GIF Description”.
In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June
2016.

Thang Luong, Hieu Pham, and Christopher D. Manning. “Effective Approaches to
Attention-based Neural Machine Translation”. In: Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing. Lisbon, Portugal: Association for
Computational Linguistics, Sept. 2015, pp. 1412-1421. DOI: 10.18653/v1/D15-1166.
URL: https://www.aclweb.org/anthology/D15-1166.

