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Problem Statement CNN for Text-based Prediction CNN Test Performance

Patents are expensive and can take years to be issued. Our CNN learns embeddings of 256 features for each B AUC =0.80
Despite the large investments companies make producing encountered word. These embeddings are run through o —

patents, there are no predictors of patent outcomes that parallel 1D convolution filters of size 2, 3, 4, and 5. The

account for both the text of the patent and the attributes of outputs of these convolutions are fed through maxpool, a

the patent. We implement two models, one utilizing the text dense layer, ReLU, and a final dense layer before softmax

of the patent and one utilizing the metadata, or general activation and cross entropy loss.

attributes of the patent. We focus on optimizing our models
to predict whether a patent will be issued or not.

Deep Neural Network for Metadata Prediction

A fully connected neural network trained and evaluated
Metadata Examp]es consists of an input layer of 22 features, a 6 hidden ReLU

layers, and an softmax output layer of size 3.
‘We derive our metadata, or the attributes surrounding the
patent, from PatEX, which comprises of records of over 9
million patents with qualitative information such as
invention characteristics, applicants, attorneys, and the
status of the patent. Examples of metadata features include:
1. Number of patents assigned to your examiner's art unit
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Figure 4: F1 Score of 0.832 for 2014-2015 Meta-
data Neural Network

Figure 5: ROC Area Under Curve of 0.82 for

Text Based Examples 2014-2015 Metadata Neural Network

keeping the first 500 words of claims text.To obtain the i i
correct labels for our text-based dataset, we used the patent i |k L
application number in the text file to find and attach the |
corresponding labels from PatEx. *

Future work will involve combining the models for the
prediction task and experimenting with different NLP models.
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neural network and text CNN on the same classification . (Y labels for
roblem (0.83 and 0.776) algorithm, we were also able to extract a measure of feature :mm r;o:i;\s) [~ 2014 text file data 2015 text file data
X .776). . e rom
P importance to the classification task. i
Feaure inporance

We see that the most predictive

features are the firm success References

rate and examiner allowance precision recall fl-score
st 1. Atigui and E. Atlani , “Patent analysis using machine learning.”
’ 0 0.703 0.569 0.629 hitps://fanginstitute.berkeley.edu/capstone-project, patent-analysis-using-m
1 0.789 0.870 0.828

D. Winer, “Predicting bad patents: Employing machine learning to predict
post-grant review outcomes for
us patents,” EECS Department, University of California, Berkeley, May 2017




