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Introduction (Problem statement)

Importance of sleep monitoring
e Poor sleep quality associated with obesity, diabetes, high blood pressure,
stroke, and cardiovascular disease [1]
e Under-recognized health issue: affects ~50 to 70 million Americans [2]
e Over age 60: disturbed sleep, 40-50%; chronic insomnia, 28%
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Polysomnography (PSG
e Gold standard for sleep monitoring
e Issues:
o Requires 11 different sensors
o Complicated setup
o Scored by human technician
Autom: ring on EE
e Subset of data - improves comfort,
reduces complexity, removes need
for human scoring
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Methods (Models / Data Analysis)
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Future Work

e Compare performance with
different/larger elderly patient
datasets

e Continue architecture search
to close the gap between
model and human error

e Try to make the models more
interpretable

e Use knowledge distillation for
compact deployable models
in wearables
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