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The Google Landmark Recognition Challenge asks competitors to classify popular
landmarks from a massive dataset of images, with few training examples for any one
landmark. Due to the extreme class imbalance and scope of the dataset, such landmark
recognition is a difficult problem.

Given a 256x256 RGB image, our task is to output a landmark ID (blank if there is no
landmark in the image) as well as a confidence score. For our model, to specify that
there is no landmark, we still output a landmark id, but use a confidence of 0.

Dataset & Metric

Dataset: The Landmark dataset [1] contains over 5 million images and over 100,000
unique landmark classes.

® Train: classes with 100+ examples (6512 classes, 1.2 million images)

® Dev: random sample from remaining images in full train set

® Test: withheld stage 2 submission set on official Kaggle competition page

Metric: Global Average Precision (GAP). Given a list of predicted landmark labels and
confidence scores, the evaluation takes a weighted average over the landmarks:
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Problem & Task Definition Final Model Architecture Results & Anal

Model Metrics on Dev Set GAP Loss
ResNet50 0241  3.183
Xception only 0.674 1.301
Xception + SpatialAttention 0.1188 3.079
Xception + BilinearPooling 0.812  0.908
Xception + BilinearPooling + SelfAttention 0.841  0.932

® All Xceptions performed as well or significantly better than ResNet baseline
® Xception + Bilinear Pooling performed best, with or without Self-Attention
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Our final model architecture consists of four major components:

1. Xception Network
- Depthwise Separable Convolutions and Residual Modules for high baseline
performance that cuts down on computation and parameters [2]
2. Compact Bilinear Pooling
- Encodes second order feature statistics by calculating outer products of
Xception output vectors
- Minimizes computational costs with Count Sketch dimension reduction [3]
3. Soft Self-Attention
- Performs 1D Convolutions on three branches of input maps
- Outputs sum of scaled attention and original input map
- Captures global dependencies by eliminating padding and adjusting for earlier
minimal kernel sizes [4]
4. Fully Connected Layer w/ Softmax
- Shrinks or expands final representation into shape (num_classes, 1) and finds

the most likely landmark id.
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® Moreadvanced attention models and/or concatenated attentions
Confidence reranking algorithms to maximize GAP

O Spatial feature matching using Google’s Deep Local Features (DeLF)
o Fast Nearest Neighbors search using Faiss algorithm

Increased model complexity (additional parameters, etc.)

Miscellaneous: indoor/outdoor filtering, training on more classes
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