Xceptional Landmark Recognition

Tyler Yep (tyep@stanford.edu), Heidi Chen (hchen7@stanford.edu)

Problem & Task Definition

The Google Landmark Recognition Challenge asks competitors to classify popular landmarks from a massive dataset of images, with few training examples for any one landmark. Due to the extreme class imbalance and scope of the dataset, such landmark recognition is a difficult problem.

Given a 256x256 RGB image, our task is to output a landmark ID (blank if there is no landmark in the image) as well as a confidence score. For our model, to specify that there is no landmark, we still output a landmark id, but use a confidence of 0.

Dataset & Metric

Dataset: The Landmark dataset [1] contains over 5 million images and over 100,000 unique landmark classes

- Train: classes with 100+ examples (6512 classes, 1.2 million images)
- Dev: random sample from remaining images in full train set
- Test: withheld stage 2 submission set on official Kaggle competition page

Metric: Global Average Precision (GAP). Given a list of predicted landmark labels and confidence scores, the evaluation takes a weighted average over the landmarks:

$$GAP = \frac{1}{M} \sum_{i=1}^{N} P(i) rel(i)$$

Main Approach

Our final model architecture consists of four major components:

Depthwise Separable Convolutions and Residual Modules for high baseline performance that cuts down on computation and parameters [2]

- Xception output vectors

3. Soft Self-Attention

- Outputs sum of scaled attention and original input map
 Captures global dependencies by eliminating padding and adjusting for earlier

Final Model Architecture

Training & Development Set Curves

✓ ResNet50✓ Xception only

✓ Xception + BilinearPooling
 ✓ Xception + BilinearPooling + SelfAttention

Results & Analysis

Model Metrics on Dev Set	GAP	Loss
ResNet50	0.241	3.183
Xception only	0.674	1.301
Xception + SpatialAttention	0.1188	3.079
Xception + BilinearPooling	0.812	0.908
Xception + BilinearPooling + SelfAttention	0.841	0.932

All Xceptions performed as well or significantly better than ResNet baseline

Xception + Bilinear Pooling performed best, with or without Self-Attention

Saliency Maps (Xception)

Attention likely added little to performance because Xception alone already heavily encodes spatial features, as depicted.

1. Xception Network

- Compact Bilinear Pooling
 Encodes second order feature statistics by calculating outer products of
 - Minimizes computational costs with Count Sketch dimension reduction [3]
 - Performs 1D Convolutions on three branches of input maps

minimal kernel sizes [4] 4. Fully Connected Layer w/ Softmax

Shrinks or expands final representation into shape (num_classes, 1) and finds the most likely landmark id.

Future Work

- More advanced attention models and/or concatenated attentions
- Confidence reranking algorithms to maximize GAP

 Spatial feature matching using Google's Deep Local Features (DeLF)

 Fast Nearest Neighbors search using Faiss algorithm
- Increased model complexity (additional parameters, etc.)
 Miscellaneous: indoor/outdoor filtering, training on more classes

References

[1] Bor-Chun Chen and Larry Davis. Deep representation learning for metadata verification. IEEE Winter Applications of Computer Vision Workshops, 2019. [2] François Chollet. Xception: Deep learning with depthwise separable convolutions. CoRR, abs/1610.02357, 2016.

[3] Yang Gao, Oscar Beijbom, Ning Zhang, and Trevor Darrell. Compact bilinear pooling. CoRR, abs/1511.06062, 2015.

[4] Dimitris Metaxas Augustus Odena Han Zhang, Ian Goodfellow. Self-attention generative adversarial networks. 2019.

Xceptional Landmark Recognition

Tyler Yep (tyep@stanford.edu), Heidi Chen (hchen7@stanford.edu)

Problem & Task Definition

The Google Landmark Recognition Challenge asks competitors to classify popular landmarks from a massive dataset of images, with few training examples for any one landmark, which is necessary for image captioning or geotagging.

Given a 256x256 RGB image, our task is to output a landmark id (blank if there is no landmark in the image) as well as a confidence score. For our model, to specify that there is no landmark, we still output a landmark id, but use a confidence of 0.

Dataset & Metric

Dataset: The Landmark dataset [1] contains over 5 million images and over 100,000

- Train: classes with 100+ examples (6512 classes, 1.2 million images)
 Dev: random sample from remaining images in full train set
 Test: withheld stage 2 submission set on official Kaggle competition page

Metric: Global Average Precision (GAP). Given a list of predicted landmark labels and confidence scores, the evaluation takes a weighted average over the landmarks:

$$GAP = \frac{1}{M} \sum_{i=1}^{N} P(i) rel(i)$$

Main Approach

Our final model architecture consists of four major components:

1. Xception Network

Depthwise Separable 2D Convolutions and Residual Modules for high

- baseline performance that cuts down on computation and parameters [2]

 2. Compact Bilinear Pooling

 Encodes second order feature statistics by calculating outer products of Xception output vectors
 - Minimizes computational costs with Count Sketch dimension reduction [3]

3. Soft Self-Attention

- Performs 1D Convolutions on three branches of input maps
- Outputs sum of scaled attention and original input map
 Captures global dependencies by eliminating padding and adjusting for earlier

minimal kernel sizes [4] 4. Fully Connected Layer w/ Softmax

Shrinks or expands final representation into shape (num_classes, 1) and finds the most likely landmark id.

Final Model Architecture

Training & Development Set Curves

Results & Analysis

Model Metrics on Dev Set	GAP	Loss
ResNet50	0.241	3.183
Xception only	0.674	1.301
Xception + SpatialAttention	0.1188	3.079
Xception + BilinearPooling	0.812	0.908
Xception + BilinearPooling + SelfAttention	0.841	0.932

 Xception + Bilinear Pooling performed best, with or without seed and All Xceptions perform as well or significantly better than ResNet baseline $\label{eq:continuous} \textbf{Xception} + \textbf{Bilinear Pooling performed best, with or without Self-Attention}$

Saliency Maps (Xception)

Attention likely added little to performance because Xception alone already heavily encodes spatial features, as

Future Work

- More advanced attention models and/or concatenated attentions
- Confidence reranking algorithms to maximize GAP

 Spatial feature matching using Google's Deep Local Features (DeLF)

 Fast Nearest Neighbors search using Faiss algorithm
- Increased model complexity (additional parameters, etc.)
 Miscellaneous: indoor/outdoor filtering, training on more classes

References

[1] Bor-Chun Chen and Larry Davis. Deep representation learning for metadata verification. IEEE Winter Applications of Computer Vision Workshops, 2019. [2] François Chollet. Xception: Deep learning with depthwise separable convolutions. CoRR, abs/1610.02357, 2016.

[3] Yang Gao, Oscar Beijbom, Ning Zhang, and Trevor Darrell. Compact bilinear pooling. CoRR, abs/1511.06062, 2015.

[4] Dimitris Metaxas Augustus Odena Han Zhang, Ian Goodfellow. Self-attention generative adversarial networks. 2019.