Improved Reliability Using Data Augmentation Mike Murugan, Amit Kulkarni (mimuruga@Stanford.edu, kulkarn1@Stanford.edu) **Motivation:** For Multi-label classifier network, its hard to ensure its precision and recall for the following two cases. - a. Rarely occurring classes - b. Lesser amount of training data across classes #### Data: EMNIST – Extended MNIST a. Training Set – 240K Balanced Handwritten digits b. Test Set – 40k Balanced Handwritten digits #### Features: BAGAN: New harder input data set. Normalized to (-1, 1). Manual: Transformations - a. Rotation - b. Gaussian Noise - c. Sharpen/Blur ## Models: Multi-label Classifier: Induce population trimming and imbalance in the dat to exaggerate the effect of misclassification error. #### Datasets used: | Global
Trim % | Balanced Data | Unbalanced
(Class "0" pruned to 5% | | |-----------------------------|---------------|---------------------------------------|--| | 1 %
(2400
images) | | | | | 20 %
(48000
images) | | | | | 100 %
(240000
Images) | | Ē. | | ## Results: | Dataset
(10 classes
of
handwritten
digits) | Fully Balanced
Dataset (A) | Dataset with 95%
images removed
from '0' digit class
(B) | Data set from B
augmented with
BAGAN to balance
it (95% of '0' images
from BAGAN) | Data set from B
augmented with
BAGAN to balance it
(95% of '0' images
from BAGAN) | |--|--|--|---|---| | 1% of
EMNIST
(total images
2400) | Accuracy Score: 0.955 precision recall f1-score 0' 0.98 1.00 0.99 | Accuracy Score: 0.9125 precision recall f1- score '0' 0.96 0.60 0.74 | Accuracy Score: 0.945 precision recall f1- score 0 0.97 0.90 0.94 | Accuracy Score: 0.9425 precision recall f1-score 10' 0.95 0.97 0.96 | | 20% of
EMNIST
(Total 48000
images) | Accuracy Score :0.991875 precision recall :f1-score 10' 1.00 0.99 0.99 | Accuracy Score: 0.98775 precision recall f1- score 0' 1.00 0.94 0.97 | Accuracy Score: 0.99075 precision recall f1- score 0 1.00 0.95 0.98 | Accuracy Score: 0.990375 precision recall f1-score '0' 0.99 1.00 0.99 | | Full EMNIST
dataset
(240000
images) | Accuracy Score :0.9951 precision recall f1-score 0' 1.00 1.00 1.00 | Accuracy Score :0.99255 precision recall f1- score '0' 1.00 0.97 0.98 | Accuracy Score: 0.9917 precision recall f1- score 0 1.00 0.96 0.98 | Accuracy Score :0.994725
precision recall f1-scor
'0' 0.99 1.00 0.99 | ### Discussion: For smaller population of data (1%) with unbalanced classes(5 % in digit "0"), BAGAN based data augmentation helps to improve Multi-label classifier accuracy. For Medium or Larger population of data (20 % and more), Manual data augmentation surpasses BAGAN based augmented data in improving Multi-label classifier accuracy. BAGAN is a generic GAN (could be used for other datasets such as photos). Training and computation involved in BAGAN are very high compared manual data augmentation. #### **Future Work:** BAGAN is good in data augmentation for low data regime with unbalanced classes. But in high data regime generated data lacks diversity. Variable auto encoders comes handy in this case, but would generate blurrier image, hence CVAE GAN is promising area to investigate. https://youtu.be/w2Tft-vmnxw