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1. What am | predicting? geothermal reservoir properties 4. Architecture: convolutional neural network 7. Example of the best and worst of the results
« Diagnosing reservoir properties is crucial for making engineering decisions for a * I used a Convolution Neural Network (CNN) for this prediction task since CNNs Best (absolute error = 0.008 ) Worst (absolute error = 0.048)
geothermal power plant. have been provgn to be effective for spatial data, as shown by the success of the Temperature vs. depth Pressure vs. depth 1., Temperature vs. depth Pressure vs. depth
* Temperature and pressure well log data is collected by sensors that are lowered ImageNet algonthm (1l Taiip T 0.98 = “TepTHIA 100, — Truth
along a wellbore, recording measurements as a function of depth (Fig. 1). * General .ar.ch|tecture: ) 02 Jemp Pred: 0.96 == el 02 Jemp Pred: 0.93 = Pt
 This data is used to ascertain five reservoir properties, shown in Fig. 1: top feed 1, Divide t!?e'dlata into bat.ches
zone (1), bottom feed zone (2), reservoir temperature (3), reservoir pressure (4), 2. Execute |n|.t|al CO“VOIUt"?n' . M e )\
and depth of reservoir pressure (5). 3. Execute n.uddle.convolutlon b!ockn times: H £
« Classically, this analysis is done visually by a geothermal reservoir engineer. * One-dimensional convolution . o
* We train a neural network once, which can then supply engineer-level results ° 0pt_|on§| Batch r‘mrm 08
within seconds. & remperature ve, denth [ * Activation function . Pres True: 0.78 Pres True: 0.60
s — — * Optional Max pooling and Optional dropout . Pres Pred: 0.78 . Pres Pred: 0.69
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5. Fully connected layer with five outputs

Cost: mean squared error. Metrics: mean absolute error. 8. Summary results of selected netwo!

Optimization algorithm: Adam. Learning rate: exponential learning rate decay.
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by the sensor as a function 1. Input temperature, Block: optional Convolution Block: 2
of depth (the log data) and o pressure, and batchnorm, optional batchnorm, ik, 5. Fully connected to 3 on
the five characteristics ot temperature activation, optional activation, optional output -
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2. Wha the put and output for each sample Depth * The CNN framework successively predicted the reservoir characteristics for easy pressure and

temperature series in the training, testing and validation sets.

In the real data, the solution may sometimes be ambiguous even for an engineer and therefore
the algorithm does not perform as well as expected.

Reservoir Therefore, | suggest implementing an algorithm which gives several possible interpretations for
Pressure an ambiguous input and a single interpretation for an easy input.

+ Input: temperature and pressure well logs — two “depth — series”.
+ Additional extracted input feature: the temperature derivative w.r.
* Output: five reservoir properties.

3. What is the available data
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We have three sets of data: Lo i o @ Dot of Reserir 10. Future/current — providing several possible solutions in
e - . tch, ", itput filte .
« Training data: 10,000 generated (synthetic) temperature and pressure series, of T O e e ot ambiguous cases
. (4 /s 3 Fi 2. G I architect
length 200. Shape: [10000,200,3]. = mel e Sl perene e (vl fsemc) feure 2. General architecture + I have started working on the above suggestion, using a similar architecture as that presented in
 Validation data: 12 real sets of temperature and pressure series, used for hyper- 5. Hyperparameter tuning section 4. However, instead of a fully connected layer in the end with five properties, there are
parameter tuning. The data was resampled to be of length 200 and normalized several possible outputs that branch out: TS Ve BRp ——.
to have values between 0 and 1. Shape: [12,200,3] There were a total of 25 hyperparameters to choose for this setup. * Anoutput that detects the first feed = Py
i’ p . : * Hyperparameter choice was done via a stochastic algorithm that sampled from the range of zone thatis a (200,1) layer followed by | == Tran - rees zoner e imospeat e
Testing data: 9 real set§ of temperature and pressure series, resamlpled to be of Hijper paraimiters, and thei evaliated the fesuts. a softmax activation. Turning this into 52 [Nemstetamy
length 200 and normalized to have values between 0 and 1. Shape: [9,200,3]. 200 training iterations with different hyperparameters were performed to find the best network. a classification problem.
~ or.m [ i . . «  Asensitivity analysis in Fig. 3 shows that the most important parameter is the number of * Asimilar output that detects the second _
2|1 = Tyop ive reservoir properties convolution blocks. feed zone. i
= [ I [m, 5] * Fig. 4 shows that the mean error decreases as a function of the number of convolution blocks. * Similar to Google Maps, the algorithm would
o & 1..m [m] predict o I *  The best model had 4 convolution blocks, ‘valid initial padding, and an initial kernel size of 12. then suggest the classifications with the
<] = Iy = Thep P Py Valdation Mean Absolute Error. highest confidence. It could be just one answer
£ © (1] [1] g : Number of convolutional blocks- EE—— Lomi o - or many interpretations based on the relative
= eA <o Py : * : Padding type first convolution (‘valid’ or ‘same’) H confidence levels } § i
i 2% 2 i pml .. pml Kernel sze first convolution 5007 oS - ) ) % R
o J g H L= : 1 5 Max-pool kernel size middle convolutions: E ¥ 006 o * Aninitial result of this multiple output algorithm Temperature Temperature
s £ P[m] P[m] Learning rate decay rate- : 2 o is shown in Fig. 5. On the right, is an example of Figure 5. The algorithm provides
2 1 200 M0l kemel sz it conval tion % §oo o relative confidence of the algorithm in the solution. multiple predictions for the input.
S w 1 B Middle convolution activation functions | H d - )
= s ¢ |om, e OTy00 Middle convolution number of output filters- === §oo On the left, the algorithm suggests many interpretations.
a R § . < : Zo0s 3 @ « The interpretations can be limited to not be too close to each other.
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absolute error.




