Handwriting Sequence Generation from ASCI|
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Abstract

‘This project explores the ability of recurrent neural networks to generate realistic
appearing handwriting from ASCII text. We replicate the results of the Graves
paper on synthesizing handwriting sequences from ASCIL. The key components of
Graves’ model include using deep long short term memory (LSTM) layers to
capture long range dependencies in the points of handwritten text, a mixture
density network (MDN) to capture the multimodal distribution of handwriting
points, and an attention mechanism to focus on generating the output for a small
‘window of one or two letters at a time. We are able to successfully reproduce the
Graves’ results with model- -ated outputs indistingui: from
human-generated handwriting when presented to human judges.

Previous Work

There is some existing work on deep neural network based speech synthesis done
by Zen and Senior. They cite limitations in existing approaches due to unimodal
objective functions leading to a lack of ability to predict variances in their
outputs. Their solution uses a mixture density output layer to improve the
naturalness of the synthesized speech. The paper is a good parallel to evaluating
and corroborating Graves' choice to use an MDN in the handwriting generation
component.

Stanford NLP researchers Luong, Pham, and Manning published a paper
exploring attention-based neural machine translation. The team has success with
both a global and local attention mechanism that looks at either all or a subset of
source words. To compare this to the Graves paper, the challenge is similar in that
the length of the input and output sequences are very different, and Graves
implements a differentiable soft window convolved with the ASCII input to learn
an attentive alignment between the characters and the "pen” locations.

Lastly, we found two companies Bond and Handwrytten that offer services to
generate custom notes and letters in personalized handwritten styles. They
actually modified robotic printer setups to move a pen across paper. It is unclear
whether their proprietary processes for learning each client's handwriting styles
involve manual labor by calligraphers parsing sample writing or if they involve
some machine learned algorithm as we show in this paper.

Dataset

The dataset used is the public IAM On-line Handwriting Database (IAM-OnDB).
The segment of the database we are interested in contains samples of handwriting
from 221 writers contributing 13,049 lines and 86,272 words from a dictionary
size of 11,059. For this project, the raw data is parsed into a three dimensional
time series where each point in the series contained point tuples of shape
(xCoordinate, yCoordinate, penLifted). In this dataset, characters and lines consist
of approximately 25 and 700 points on average, respectively.

‘We take the lines and break them down into a 90/10 train/dev split, or 11744
training and 1305 dev samples respectively. This would traditionally be bad
practice due to the high possibility of overfitting on the training set. However, for
the goal of generating realistic looking handwriting, overfitting is not a large
issue.
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3 layer LSTM Network

The backbone of this model is the LSTM
network. We use a 3-layered LSTM network
with a hidden state size of 400 each. LSTMs
are a natural fit for this handwriting
synthesis problem due to its affinity for
sequential data and capturing long range
dependencies. First, the points in
handwriting are sequential data where
previous points strongly influence where the
next points should be. Furthermore, each
character can be a long sequence of twenty
five to forty points. Lastly, handwriting
contains delayed strokes like crossing t's,
which perform worse without LSTMs
extended memory cells.
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Mixed Density Network and Loss Fn  (xe.ye.e0s,) (., o On)
MDNs augment classical neural networks with a mixture density model and have
shown to be useful when modeling multimodal distributions. The mixture density
model consists of a collection of distributions, and the final target probability is
calculated by taking a weighted combination of each distribution.

For our MDN, we use M mixture components consisting of bivariate Gaussian
distributions for the x and y offsets and a Bernoulli distribution for the end-of-stroke
indicator. The Gaussian distributions are defined by their means, standard
deviations, correlation, and mixture weight. There are 7M MDN parameters. We learn
these parameters by setting them to be outputs from the final network layer.
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Attention Mechanism

In this project, we build the attention layer to generate a sliding window over the
letters being translated to handwriting. As longer lines of ASCII text can require up to
700 handwritten output points, giving the model an idea of several characters to
focus on can greatly improve the quality of the output.
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w is a U-length vector representing the attention weight of each character. phi(t,u)
gives the window weight of one-hot vector c at time t. Alpha weights the influence of
the k-th distribution, beta controls the width of the window, and kappa directs the
location of the window within the sequence. We learn these 3K parameters by setting
them to be outputs from the first hidden layer of the network.
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Results / Discussion

Handwriting Sampling and Synthesis

After training the model, we can synthesize new handwriting from ASCII by
initializing a tuple and feeding it once through the network. Then, we feed the
previous output as the input for the next iteration. We define a stopping heuristic that
checks whether the attention mechanism's window weight thinks the network is past
the final character. Note that since this generative problem has no test metric, the
training loss is relatively inconsequential.
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Primed Sampling
Priming the model to mimic a specific style is also possible. To do so, we start off with
the stylized T-length input sequence x mapping to its ASCII sequence c. For the first T
steps, we feed the network x_t instead of the output from the previous timestep,
effectively "clamping” the model to a specific style. Afterwards, the network will
proceed as usual, feeding as inputs the outputs from the previous timestep.
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Biasing MDNs

We can bias the model towards better handwriting by providing a bias term that
reduces the standard deviations in the MDN Gaussian distributions. We are
effectively giving preference to "better” handwriting closer to the mean of each
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Conclusion and Future Work

‘We are fairly satisfied with being able to replicate the Graves paper with such success.
‘With a some MDN bias, the output is very clean and legible. At the same time, the style
priming worked well and was able to capture distinctive elements of each style. One of
biggest possible improvements for this project would come from increasing the size of
the dataset. Today, we could easily create an app to record new handwriting samples on
tablets. Another direction for future work would be applying the model towards speech
synthesis. The problem domain is very similar to handwriting synthesis, but it would be
potentially much more challenging due to the higher dimensionality of speech and audio
data when compared to the points of handwriting data.




