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KNNBasic  0.849223 0.000602 0.004808

preference can fluctuate much more on any given time -
or day. This makes it more challenging to build an
effective recommendation system for this application.

NormalPredictor 1.003145 0.000735 0.001739

Table 3 Deep learning accuracy RMSE's for validation and test sets
Validation Accuracy Test RMSE Baseline RMSE
0.59 0.73 0.66
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The lowest deep learning model RMSE was
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Data
The dataset consists of 1161 restaurant ratings with
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corresponding restaurant and user information 9
different data files [2].
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Fig. 3 Distribution of number of customer ratings per restaurant

0.73, which is not as good as the chosen
baseline of 0.66. The likely cause of the
limited performance is due to overfitting of
the training data. For future work, the results
from this study encourage building deep
learning networks using larger datasets.
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