Overview

We propose and test a greedy approach to find a set of hyperparameters that outperform a baseline model, faster than other methods of hyper-parameter testing for a food image classification task.

We built an algorithm based on ResNet50 that, when presented an image of a prepared/cooked food, classifies the food as a specific dish.

Method - Architecture

We kept most of the architecture of ResNet50 untouched except for adding fully connected layers, dropout layers, and a softmax output layer. We modified the weights of Resnet50 by unfreezing some of the final convolutional blocks to allow improved fitting to our data-set. After allowing for trainable convolutional layers, the network was able to pick up on the higher level features of food items.

Methods - Tuning

After every 5 epochs, we alternated hyperparameters that we were focused on tuning, always picking the best performing option based on F1 score and continuing with it. We used an Adam Optimizer and categorical cross-entropy loss to train the model.

Results

We compared our model to the performance of 4 models initialized with random hyperparameter values also trained for 30 epochs. Our model slightly outperformed the other four models, suggesting our greedy approach to hyperparameter tuning was in fact effective.

<table>
<thead>
<tr>
<th>Model and Hyper Parameters</th>
<th>F1 Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>0.56</td>
</tr>
<tr>
<td>SVM</td>
<td>0.54</td>
</tr>
<tr>
<td>Random Forest</td>
<td>0.55</td>
</tr>
<tr>
<td>BERT</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Table 1. Greedy search approach outperforms random hyperparameter initializations.

Error Analysis

We found that the food items with the highest micro-F1 were items with unique textures: foods like Watermelon (96), Sushi (86), and waffles (84). The model performs poorly on foods like cakes (Lemon Cake, 23), Orange Cake (00), where discrepancies between flavors and styles might be much harder to distinguish and where the overall appearance of the different classes are extremely similar.

Future Work

Some logical next steps to improve our greedy algorithm and classification task involve tuning different hyperparameters, iterating over a different amount of epochs, and applying the model to other types of cuisine. It would also be interesting to see how well the greedy algorithm generalizes to other image classification and deep learning tasks, as it can provide a computation and time effective method of training a model.

References


Acknowledgments

We would like to thank our TA Sarah Najmark for her valuable guidance throughout the project.