Reduce toxicity on the web with fewer inequity-based errors

Create a classifier using model-bias limiting techniques

Examples*:

"f*** women" → Toxic

"u suck at coding cuz ur a girl" → Toxic
"l am a woman" → Not toxic
"being a woman sucks" → Not toxic

*These examples are less extreme than what is in our dataset.

Data kaggle

Civil Comments Data

Labeled for toxicity and

identity by annotators. Labelling scheme (by severity) allow for mild but not extreme toxicity. 29% of data labeled for identity.

Our Team

Identity-mentioning

Encyclopedia articles, sentence generators, news articles and editorials found by us, from known non-toxic sources. Labeled using identity keywords.

Features

Comment Text

String → Vectors Length: 1 to 1906 words Tokenized + Vectorized GloVe word embeddings

Processed for sequential

Identity labels 24 labels for race. religion, sexuality gender, disability

FINAL MODELS

Toxicity Labels Float → Boolean Target label >= 0.5 are toxic (true/1) < 0.5 are not toxic

Metadata/misc Annotator count, time posted, likes, reacts, type of toxicity, etc.

We don't use these provided features.

Process + Models

INITIAL MODELS

Baseline Model

To find a good baseline, we tested and tuned four models for accuracy.
 Model
 Test acc

 2-layer NN
 0.9089

 LSTM
 0.9505

 CNN
 0.9249

 CNN-LSTM
 0.9507

The LSTM and CNN-LSTM performed well (~0.95), but performed well (~0.9) the CNN-LSTM ran significantly faster.

Error Analysis

Wrote script to identify identity distributions and find **error-inducing keywords**. Ex: insane, crazy, silly.

Samples with black, muslim, and

OPTIMIZATION FOR ACCURACY & BIAS + ERROR REDUCTION TECHNIQUES

Bias Reduction
Used news/editorials/encyclopedia
entries for non-toxic use of identities,
annotated with a script detecting
keywords. Based on our research [1]

Auxiliary Labels + AUC

Trained models to predict auxiliary labels (identity labels) to improve predictions improve predictions ity [2]. Labels were based

Hyperparameter Search

GloVe Word Vectors

Supplemented limited vocab

Used **Common Crawl** 840b token vectors, which most closely matched our expected usage

LSTM/Attn

- Embedding layer with spatial dropout 2 stacked LSTM Layers 2 attention layers 2 hidden linear layers (relu; input: attention layers, max and ay pool) 2 relu output (1 for targets, 1 for auxiliary labels)

Embedding layer with spatial dropout 2 stacked LSTM Layers 2 hidden linear layers (relu; input: LSTM layers

max and avg pool)
- 2 relu output (1 for targets, 1 for auxiliary labels)

Trained Google's pretrained and uncased BERT model with 69.4% of the training data to train and export a model to use on the test data. BERT

LSTM + BERT

Used a rank ensemble model with a weight of .65 on our LSTM and .35 on the BERT model

where \hat{y} is the final prediction and ω is the probabilistic weight of each model's output y_i .

Results

Train (acc)	Train DA (acc)	Train (auc)	Train DA (auc)	Test (auc)	Test DA (auc)
0.9501	0.9643	0.9618	0.9645	0.9067	0.9080
0.9632	0.9612	0.8769	0.8929	0.9364	0.9359
0.9541	0.9549	0.8188	0.8139	0.9346	0.9339
				0.9365	
				0.9391	0.9392
	0.9501 0.9632	(acc) (acc) 0.9501 0.9643 0.9632 0.9612	(acc) (acc) (auc) 0.9501 0.9643 0.9618 0.9632 0.9612 0.8769	(acc) (auc) (auc) 0.9501 0.9643 0.9618 0.9645 0.9632 0.9612 0.8769 0.8929	(acc) (auc) (auc) (auc) 0.9501 0.9643 0.9618 0.9645 0.9067 0.9632 0.9612 0.8769 0.8929 0.9346 0.9541 0.9549 0.8188 0.8139 0.9365

BERT improved by 3% after marginal increases in dropout and increased

exposure to the training set

Both LSTMs were a 3% improvement over baseline, although our LSTM with attention performed worse than expected.

Data Augmentation improved our baseline and rank ensemble model,

Rank Ensemble worked better than Linear Ensemble by 1%

Train: 1624387 Val: 180996 Aug Data: 4580 Test: 97320

AUC SCORE EQUATIONS [3]

$$M_p(m_s) = \left(\frac{1}{N} \sum_{s=1}^N m_s^p\right)^{\frac{1}{p}}$$

 M_p = the pth power-mean function m_s = the bias metric m calulated for subgroup sN = number of identity subgroups

$$score = w_0 AUC_{overall} + \sum_{s}^{A} w_a M_p(m_{s,a})$$

A = number of submetrics (3)

A – number of sometrics (s) $w_{s,a} = b$ using submetric a $w_{a} = a$ weighting for the relative importance of each submetric; all four w values set to 0.25

Discussion

The Good: Auxiliary labels helped significantly— it likely made our model distinguish between ways how people talk about identity (versus other subjects). **Embeddings** gave our models a broader vocabulary. **Rank Ensemble** gave us the best of both our models.

The Bad: Our LSTM with Attention. As a model we forked, we suspect that the tradeoff between sequence length and attention didn't pay off.

The Okay: Data Augmentation provided mixed results. Confusing examples of people talking about harassment or other negative experiences may have caused this. **Hyperparameter Tuning** was insightful but inactionable given competition time limits.

Future Work

Error analysis on our other models to figure out data analysis flaws. **Supplement Data** with more examples for lesser represented identities, even distributions by identity and comment length.

Further model improvements: A better LSTM/attention model, train BERT on augmented data, and ensemble average the resulting model

[1] Jeffrey Sorensen, Nithum Thain, Lucy Vasserman, Lucas Dixon, John Ll. 2018. Measuring and mitigating unintended bias in text classification. Jigsaw. [2] Quang Nguyen, Hamed Valizadegan, and Milos Hauskrecht. 2011. Learning classification with auxiliary probabilistic information. In 2011 IEEE 11th International Conference on Data Mining, pages 477–486. [Eq. 1] gasew. 2019. Jigsaw unintended bias in texticity classification. Thank you to the entire Kaggle community for their trips and educational examples.

References