Semantic Segmentation of Colon Polyps in Colonoscopy Images

YOUTUBE LINK: https://www.youtube.com/watch?v=9xskFU8ldbc&feature=youtu.be BACK UP: https://bit.ly/2WrxWGQ

Stanford

Overview

The Problem

- In colonoscopy procedures, the miss rate for colon polyps is 22% [1].
- Colon polyp segmentation is more often explored with computer-aided detection methods. Few endto-end deep learning attempts at this task exist.

Our Solutions

Use synchronous image-mask data augmentation to train a U-Net or a SegNet.

Real-World Application

Future work could entail introducing automatic polyp segmentation software into a colonoscope.

Data/Features

Dataset

- CVC-ClinicDB: 612 frames (RGB, 384x288) collected from 29 colonoscopy video independent sequences with corresponding ground truth masks [2].
- Insights: Adjacent images in sequences look similar, separate sequences into train/dev/test, not individual images. Train/dev/test split:
- - train: 435 images (sequences 9-29) dev: 50 images (sequences 1-2)

test: 127 images (sequences 3-8)

Pre-processing Images were pre-processed to be grayscale and

128x128 resolution. To the eye, the colon polyps are distinguishable after this transformation.

- Data Augmentation Due to the cylindrical geometry of the colon wall and the nature of the video taking procedure, rotations are justified (0-360 degrees).
- Vertical/horizontal flips and slight brightness shifts also applied for a greater ability to generalize.

Key References

- oen C. van Rijn, Johannes B. Reitsma, Jaap Stoker, Patrick M. Bossuyt, Sander J van eventer, and Evellien Dekker. Polyp miss rate determined by tandem colonoscopy: A tematic review. American Journal of Gasotroentereology, 101, 2006.
- stematic review. American Journal of Gasotroentereology, 101, 2006.

 sal et. al. Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation vs.
 eiency maps from physicians. Computerized Medical Imaging and Graphics, 43, 99-111,
 15. [2] Bernal et. al. Wim-dova maps for accurate polyn ingringining in coornova-ye-remanders asliency maps from physicians. Computerized Medical Imaging and Graphics, 43, 99-11 2015.
 [3] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-nett: Convolutional networks for biomedical image segmentation. Coffit, abs/1950;04597, 2015.
 [4] Vilying Badimarayan, Alex Kendial, and Roberto Cipallo. Segret A deep convolutional activation of the computer Vision and Pattern Recognition, abs/1511.00561, 2015.

Models and Methods

Architectures

U-Net [3]: Primary architecture of this work. Fully convolutional network consisting of an encoder and a decoder with "skip connections" to connect encoder levels with the equal resolution decoder levels to merge local and global information -- a necessity for segmentation tasks.

SegNet [4]: Convolutional encoder-decoder network. Differs from U-Net in that non-linear up-sampling is achieved the decoder's use of the pooling indices of the corresponding encoder step (5 steps each) [2].

Metric and Loss

$$D=\frac{2|A\cap B|}{|A|+|B|}$$

Dice coefficient: Effectively an intersection over union calculation. Above, A is the prediction mask and B is the ground truth mask.

Loss: Negative dice coefficient. Performed significantly better than binary cross-entropy in the baseline

> Note: Baseline U-Net used no data augmentation. Train/Test dice: 0.92/0.29. Data augmentation dramatically reduced variance.

Tuned Models

Model	Learning Rate	Opt. Algorithm	Batch Size
U-Net	0.0001	Adam	8
SegNet	0.0001	Adam	1

Results and Analysis

Results

Model	Train (Dice)	Test (Dice)
U-Net	0.56	0.48
SegNet	0.33	0.23

U-Net trained for 300 epochs. SegNet trained for 102 epochs

Results and Analysis

- Predictions are visually satisfactory when: polyps in frame are roughly circular, high contrast in image.
- Predictions visually unsatisfactory when: polyps too large/too small in frame, low contrast in image.

Future Work

Improve Current Models

- U-Net: Use a larger encoder-decoder along with higher resolution, RGB images. Reason: some polyps have a distinct color contrast compared to colon wall.
- SegNet: More extensive hyperparameter tuning, longer

training. Explore New Models and Techniques

- Implement transfer learning with FCNs trained on ImageNet. Survey sequence models for real-time colon polyp
- segmentation.

Long-term

Develop colonoscope with embedded polyp segmentation software.