ChessNet: Transcribing Chess
Positions from Images

Abstract

e Context: Chess players take photographs of
board positions for future analysis.

e Purpose: Our model turns photo into text.
Player can paste text into a chess engine
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Input Board image

Model:

Crop the image into squares of one piece
Apply transfer learning from ResNet50
Train a neural network on 15,000+ images
Achieved average F, = 0.94
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e 10,000 labelled chess-piece images ” ~ x

compiled by Daylen Yang [1].

o Mostly pawns, empty fd
o We hand-labelled additional 10,000 images
produced from the cropping algorithm in

Model Task 1, then augmented as well

K Data Augmentation
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[1] Yang, D. (2016). Building Chess ID. [online] Medium.

e Extract board from input
image using Canny Edge
detection, Hough line
detection, corner extraction,
then geometric
transformation

e Evenly crop transformed
board into 64 images of
individual squares

A
Transformed board

64 Cropped squares
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Task 2: Piece Classification
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Pretrained ResNet50

e Substituted last FC layer with 13 unit layer, softmax activation
e Adam optimization, Loss: sparse categorical cross-entropy
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Softmax NN

e Eachsquareis bk>
classified separately ®a
and then the board is
reconstructed

FEN Transcription:
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board mistakes  Flpe, Fliey

Trained Layers  Batch Size  Epochs
256

<2 0934 0.944 25 2 ~17323
<4 0955 0954 14 256 30 ~19789 ~1398
<15 0.983  0.984 33 128 20 ~19789 ~1398

e Best model achieves F1=0.94 with few mistakes on a
real board transcription
e Other models overfit -> perform poorly on real boards

L score o ciase

e Model inevitably overfits to limited data
e Best classification of empty squares and worst of black
bishops and kings

Confusion matrix, without normalization

~ Similar Pieces Confused:
e Bishops for Pawns
e Kings for Bishops
e Queens for Kings
Confused by:
“ e Badcrops
e Other pieces in photo

True label
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Future Work

e Increase size of database (currently prohibitively small)

e Generalize model to more piece/board styles

e Build end-to-end object detector and classifier similar to
YOLO
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