

Convolutional Neural Networks for Sustainable Waste Classification

Sarah Ciresi, Anand Natu

Background / Problem Statement

Motivation: Municipal recycling is complicated by inconsistent waste disposal practices – educating consumers on proper disposal methods can significantly enhance the efficiency and safety of recycling processes

Automated waste classification: Given an input image of some piece of waste, determine the appropriate disposal treatment as a multiclass classification task

Mobile use case: Target end use is a in a mobile app that should allow consumers to perform real-time waste classification using their phone camera. Therefore, we seek an optimal combination of classification performance and model efficiency (compute- and memory-intensity)

Methods

Model Selection: Problem feasibility established with best-in-class performance models (VGG-16, ResNet101), and then optimized for a mobile hardware setting (MobileNetV2). Results compared to RBF SVM baseline.

Transfer Learning: ImageNet pretrained models are used, with output layer swapped to match our classification task. Models are finetuned (re-trained on our data) using 3 different learning methods:

1 No finetuning other than final 2 Partial finetuning of subset of model 3 of all model linear layer layers

ResNet-101

	-
for Expensor Con.	Jad Depthwise Corn. Septiment
Bestom	Investor Passillation (
Peccel (No) Desthate Core	1)
Bestform	Sheded Pleasure Stock
factor fall Promotor Corp.	Text Pointwise Core 1
Section	Period Grown Avg Pooling
	FC Y

		Method			
	VGG-16	(1)	0.00012	0.1	11
	VGG-16	(2)	0.0001	0.1	7
	VGG-16	(3)	0.0001	0.1	7
	ResNet101	(1)	0.00015	0.1	10
ning	ResNet101	(2)	0.0001	0.1	7
9	ResNet101	(3)	0.0001	0.1	7
	MobileNetV2	(1)	0.01	0.1	7
	MobileNetV2	(2)	0.0005	0.1	7
	MobileNetV2	(3)	0.0008	0.1	7

Specification of Convolutional Models
Tuned HP values and compute / memory

Model	Input Size	# Params	Memory (MB)	GFL0 Ps
VGG-16	224x224	133M	528	16
ResNet101	224x224	44M	170	8
MobileNetV2	224x224	3.4M	13	0.32

Discussion

Classification Performance

- > Fully finetuned ResNet101 model achieves the highest test set
- However, comparable performance from the lightest and most compute- and memory-efficient model, MobileNetV2 (90.1% test accuracy)

Accuracies correlate positively with extent of fine-tuning, which
comports with general expectation
 Analysis of misclassified images confirms that the model errors
resemble challenging cases for human-level reasoning on this
classification task, or indicate data volume as a root-cause

Incomplete image: Only part of the bottle is visible, so its paper label is misinterpreted

Data Collection and Preprocessing

- > We use the TrashNet dataset collected by Yang and Thung as
 - the base of our dataset

 2,527 color images of waste labelled as one of six classes: paper, plastic, metal, cardboard, glass, trash
- We augment the dataset with an additional 1049 images
 926 images across the six TrashNet categories
 300 images of waste in the novel compost class
- Data is hand-collected by taking photographs of waste using cell phone cameras to ensure that images resemble input from the intended mobile use case
- All images are resized to dimension 224x224x3 to match standard input size of pretrained model architectures
- ➤ Combined dataset size of 3,753 images is split 70/15/15
- Employ data augmentation techniques (random crops and random flips) on images in the training set

Experiments and Results

Confusion Matrices for Test-Set Classification

Summary of Model Performance

Model	Learning Method	Train Acc.	Val Acc.	Test Acc
SVM	-	99.8%	56.5%	54.6%
VGG-16	(1)	85.7%	82.4%	-
VGG-16	(2)	94.6%	90.2%	
VGG-16	(3)	94.5%	90.3%	89.7%
ResNet101	(1)	73.9%	78.6%	
ResNet101	(2)	97.6%	93.7%	-
ResNet101	(3)	97.7%	94.4%	91.6%
MobileNetV2	(1)	77.1%	81.7%	-
MobileNetV2	(2)	95.5%	91.1%	
MobileNetV2	(3)	95.2%	92.1%	90.1%

- Convolutional models significantly outperform the SVM baseline, and do so exhaustively across all
- Collisions and Symmetry Collis

Conclusions

- High accuracies and baseline clearance show that robust waste classification can be achieved by leveraging CNNs and deep learning-based modeling
- High visual variance in certain waste types (e.g. compost) suggests that augmenting data is an important determinant of robustness

Future Work

Expand and enrich trash and compost

Implement instructive guidance to help users properly dispose of classified waste