PREDICTING EFFECTIVE CUSTOMER TOUCHPOINT

Ahmed Bux Abro, Nagarjuna Rao V S Chakka
CS-230 Stanford University

https://youtu.be/X_dIEZn8Wek

Deep learning has conventionally been used for unstructured data. We are using
deep learning prediction model to target Google marketing problem, to predict
what is the most effective touchpoint (mobile vs desktop vs tablet) for their cus-
tomers that shop on Google online merchandize store (GStore). The model pre-
dicts the touchpoint based on the structured dataset of 1.7 Million customer online
visits. Our project leverages the two different encoding techniques for structure
data One-hot encoding for inputs and Label Encoding for output (predicting labels)
and predicts the 3 output classes with 96.7

Dataset

We use Google’s structured ecommerce dataset available for Kaggle’s Google
competition, it includes 1.7 Million past customer online visits that shop on Google
online merchandize store (GStore). Data includes customer transactions informa-
tion, purchase detail along with the touchpoint and channel used for the transac-
tion. The dataset is split between the training data and test data. Raw data with
customer transactions was exported from Google’s ecommerce website in .csv
format, with many columns aggregated as JSON blobs that required efforts to
preprocess the data. Further detail about the dataset provided in following sec-
tion.

Dataset Overview:

Train.csv: contains customer visits and transactions from August 1st 2016 to
April 30th 2018. Rows: 903653, Features: 55

Test.csv: contains customer visits and transactions from May 1st 2018 to October
15th 2018. Rows: 804684, Features: 53

Data Preprocessing

Both training and test datasets included 4 JSON format aggregated columns
titled as device, geoNetwork, totals, trafficSouce.

Following phases of data preprocessing were performed on the datasets:

o First, flatten the data and extract all sub-columns from the JSONs

 Second, adding new time features. Also adding new aggregated features (aver-
age and sum) grouped by unique fullVisitorld.

e Third, change the data types as appropriate for model, such as converting nu-
merical to floating and device.isMobile from Yes/No to 0/1

o Fourth, Columns were checked for more than 50 percent of null values and were
dropped

 Fifth, columns were checked for the null value and filled for its missing and null
values

« Finally, getting rid of the columns that are not needed for the model such as traf-
ficSource.adwordsClickInfo.*, trafficSource.*, socialEngagementType, sessionld,
device.browser*, visitld, visitStartTime

Data Normalization

We used MinMax Scaling using below formula:
x: — min(x)
max(x) — min(x)

Fig. 1: Normalization

Encoding (One-hot and Label Encoding)

Based on our research, we learned that the significance of different encoding types based
on the requirements of the model and individual data type for features and labels. One-
hot coding was applied to categorical features: channelGrouping, device.isMobile, month,
weekday. Each feature coding resulted in number of dummy variables. It dramatically intro-
duced the number of features of one-hot coded columns. We also applied label encoding
for selected categorical and labeled data and perform the fit and transform functions on the

encoding.
Label Encoding One Hot Encoding
Food Name | Categorical # | Calories Apple | Chicken | Broccoli | Calories
Apple 1 95 | 0 0 95
Chicken 2 21 0 1 0 231
Broccoli 3 50 0 0 1 50

Fig. 2: Encodings used

Loss Function

Since we use multi-class SoftMax classification for our output layer and our labels are integer
encoded, we use sparse categorical cross entropy loss function.

M
e Z Yo,c log(pa.c)

c=1

Fig. 3: Sparse Categorical Cross Entropy

Our model is a multi-layer perceptron (MLP) using fully connected neural networks with
input layer, four hidden layers and multi-class SoftMax classification output layer. Model
uses “ReLU” activation for input and hidden layers while the output layer uses “SoftMax”.

Fig. 4: Model Architecture

Hyperparameter tuning

We tried and tested different model architectures before reaching to our final
model architecture that fits our requirements, features and output. After experi-
menting different mini-batch sizes, we notice that the mini-batch size of 128 was
the best performing architecture for our model as there was a significant differ-
ence in performance and accuracy with different batch sizes of 32/64/128.

We also tried using large epoch sizes but noticed that there was no much differ-
ence in performance beyond 50 epochs. Also experimenting with learning rates
of 0.0001/0.0002 and 0.0003, we found that the learning rate for 0.0003 was the
best parameter for learning rate. Below is the summary of hyperparameters for
final model .

ReL (for hidden layers)and Softax (for Output)

Learning Rate 2=0.0003

m i

Fig. 5: Final working Hyperparameters.

The final model results offered a 96 percent validation accuracy, 13 percent val-
idation loss.

FeS——

Fig. 6: 50 Epoch Accuracy.

Fig. 7: 0 Epoch Loss.

