Using Deep Learning to Predict Locomotive Intention from Hippocampal Signals
Nicolai Ostberg and Max Melin

CS 230 Spring 2019

Abstract & Backgrour Model Results (cont’d)

Model #1 Model #2 Model #3
* Goal: Develop an LSTM model that inputs local field potential (LFP) 4 postion gl hege P s — Errmensgosen | e — Bt poson]
or neural spike data from hippocampal neural recordings and predicts [ v Comtor e[ Pl st [ ot | s %}\ et s . rescamsoon | redetea poson
X,Y position 1 e 1 = 1 0| TSN 50 1
* Previous brain machine interface has been able to reconstruct motor (nromatonen ] (Csanamatinen | (s romatenen | . { = -
intent for a limb using motor neurons. (Lot ayer (100 o) (=) LT Laer (00 com) ) g 12 N =
* Hippocampus know to be involved in spatial navigation intent for the — — of ™R saaba, | © | ®
entire body -> important for controlling wheelchairs/walking S & S a =
; T i e b 5w W W
« Previous models have used f:ontro! tht.:ory approaches»sucAh as Kalman e TR, TR b Model #4 Model #5
filters to try to model Gaussian noise in neural data with limited ‘ _,‘ . — ‘ Overview of LSTM Model. ., W i e
Success. ; ) | \ a. A three layered LSTM w| SETES s s ge——
* Previous implementations of echo state networks worked well with —_— 1 model was constructed to o] T =
5 ST (100 ot ST Laor 100 ) LT Lo 100 o) N 2 -
cursor movement and eye motions. . e process neural data with X . N
* We seek to demonstrate a proof-of-concept LSTM model that can use \ | | and Y position predictions at N
hi 1 signals to decod tintent. i ) ‘ ] i i ic =
1ppocampal signals to decode movement intent a :wlm lv’mlm o l‘m each time pmfm b. Schematic B ~—— B, : ——— 3
ored s sk e version of a single LSTM W % ™ T R
node. . . .
Dataset Position Predictions from LSTM Models. Six models were trained and the resulting
< Traning Loss Over Epochs . S5 = ) )
predicted positions (orange) were overlaid with the ground truth experimental results (blue).
20000
— rreacteaposton
ARGy e Loss declines over training. « |  menetpon
£ *— T § 15000 Mean squared error (MSE) %0
4 R = TR R E 12500 was used for loss function as g
{ A 3 ; . g
v § “‘h““\‘mw“‘"\“H“”‘“““\““N“ 10000 is common in BMI
| \“ VY \“J l“m“ “‘H U 2 700 applications. Loss showed * l
| Loy 7 , o o TSR SNSIAY S |
! ! L decline over training epochs. e ettt
a 2500 a me b
o o«
B o 2 4 o L i
oo Epoch number 0 i
=== v £
3 EW g = :
g Results ” :
i 3

= v % % % %
—————— Model | Datz Inpul Layers _Sequence Length | Mean Squared Error  Avg Point Distance c Vlcky (e d
: Tm 1 Spike 3 100 78.852 0.288 Error Analysis from Model #2. a. MSE varied greatly over time. b. Error tended to occur
b . ¢ 2 Spike 2 100 20.803 0.465 along straighter potions. c. Inverse correlation between position and error (R? = 0.4007). d.
3 Spike 1 100 101.076 0.734 Inverse correlation between spike at timepoint and error (R2 = 0.1401)
Data acquisition pipeline from open field foraging task. a. A Long-Evans 4 Sl’f“ 3 20 40.577 0.243
rat explored a open field seeking water rewards while brain activity was J Spike 3 S 49.257 0.4688 . ] ]
electrical activity in the brain was monitored via shank probes. b. LFP from ° LiP 3 100 LIOATS i Conclusions & Future Directions

32 probes plotted over 3 seconds. Characteristic 8 Hz theta waves were
noted. c. Binned spike counts from probe locations over entire recording
session.

Summary of model architectures and results. Six models were constructed that
varied the number of LSTM layers in the model, the sequence length (number of
previous points inputted at each node), and data input (LFP or spike data). MSE and
distance between points (measured of “jaggedness”) were reported.

Model 2 and model 4 represented best accuracy as measured by RMS and “jaggedness” as
measured by distance between points.

Add term to punish jaggedness into loss function, use velocity instead of position
Successful proof of concept for using hippocampal neural recordings for locomotive intent



