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Introduction Model training and validation Results
« Every year since 2000, an average of 72,400 wildfires burned an average of 7.0 million acres in the U.S. Training Loss Validation Loss A omtsdeneak B DabeTa oy s

- Scarcity of wildfire image and video databases make training with smaller data sets necessary.
« Previous studies have used pixel-level fire identification for the purpose of non-temporal fire localization with deep neural

Adam
networks, either end-to-end or for classification of image patches or superpixels pre-processed from fire images.
« | present a transfer learning approach that improves our ability to specifically localize wildfires. e ey -
: ; p s « » reicedioon
« Input: |sol.ated superpixels that are Fre—segmented lrom |ma.ge.s of deflrgs. ) ) N ) \ . A) Representative normalized confusion matrix for isolated
+ Method: fine tune a reduced Inception v1 CNN to classify wildfire superpixels as ‘fire’ or ‘non-fire’. Positively predicted ‘\ = Momentum with superpixel classification. B) Histogram showing distribution of loU
('fire") superpixels for each image are then reconstructed to localize the predicted fire within the original image space. Y, . learning rate scores for reconstructed wildfires.
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Data and Features Model , -

Input images (top)
and saliency
maps showing
magnitude of the
saliency (bottom).

+ Corsican Fire Database (595 images B L . | U\“V"‘\r‘}w@,‘(\.’mvﬁ Acam withdata
paired with binary ground truth images) " augmentation

+ Split 7:2:1 into train/val/test ﬁﬂﬂﬁﬁﬂﬂggﬂggﬂﬂggﬂﬁl 1 =
(41,594/11,899/6,000 superpixels) . Stops (ot sl‘ze=256) 2 14k 1o

+ See Workflow below for pre- E 'E E 'E E ”E
segmentation and labeling method InceptionV1-OnFire [1]: a reduced Inception vi model with three

" Model Accuracy F1  loU
E les of original i di A) original i inception modules and softmax output activation. First two - -
xamples of original images and input. A) original image, inception modules were frozen for tuning and fully Original pre-trained 0.90 0.70 049
B) groL{nd tr_uth image, C) fire superpixel (input), D) non-fire layer was replaced. Adam 0.93 0.84 071 Examples from recent
superpixel (input). Loss Function Adam w/data aug. 0.93 0.83  0.69 California, Colorado, and
- N wia deca 093 084 070 ires i i
Workfl L= yiloggi + (1 — yi)log(1 — 4i) L y _Ui& Oregon fires mcludmg
Oorkriow 7 Batch sizes tested: 64 and 256 tFr!e Wozslgy Fllr:, GCamp
el
> + Adam, alpha = 0.001 (above) and alpha = 0.01 o i g
‘ - . i i — o . ot seps/100) )
Momentum with learning rate decay o = a - x ™ reconstructed predicted
Train ) \ + alpha =0.01 superpixels (right).
~Y_train=[01..], " + x=0.97 (above) and x=0.993
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CNN L Y_hat=[01..], v, .
W ; - . Results Conclusions
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Test 2 ‘ 6 Predict on test set ‘ « This network outperformed a pre-trained fire network on this
5 Tuning of reduced p pl
< InceptionV1 model with &1 OTPUIe Tetes 8 Compute loU = dataset, achieving an F1 score of 0.84 and mean loU score of 0.71
isolated superpixels « ¥
Lonithn b4 o e Y N e o compared to 0.70 and 0.49, respectively, suggesting that wildfires
evivaiaet vl 3lsolte superpiels sl Superptas BprERel have unique features compared to urban fires.
p? i . e o - -
2264224 mage. Also e i « The network successfully identifies fire while excluding smoke, but
Method e il misclassifies orange ‘fire-glow’. It is affected by lack of context.
ethods « Training initially resulted in overfitting to the training set, which was
Metri a mitigated by data augmentation or early stopping.
rpixel mentation ! Examples of criginal images and fires reconstructed from S Saliincy mZps sugggst that the most s)zlilienf?eg?ons for predicting
. . - e - = = classified superpixels (following image resizing). 2
ﬁ:mple I‘Z‘e:: “em‘“e‘d“ﬁ‘e"": (‘SU'(F: Wa%“‘i‘i}‘f'se; de = /(= 1)2 + (a; — ;)2 + (b — b;)? precision = recall = — 2 d/imag g the output class are pixels that are close to but not exactly the color
L Ages 10 0 PeIeEpl R Y TeaNig 1L Toplons ek ers p+fp tp+fn of fire. Bright orange pixels have smaller gradients.
similar in color and texture. It adapts K-means clustering p 3 ) . N 3 o
to reduced spatial dimensions for computational efficiency. cj = xi)? + (g5 — 4:)? F=2. prcc:h:mn-rccall + Suggested future directions include increasing other regularization
The distance measure D combines color proximity (d,., in precision + recall methods such as dropout, testing a larger hyperparameter space,
CIELAB color space) and spatial proximity (d) and nor- de ANB unfreezing additional inception modules during training, and training
malizes each by its respective maximum within a cluster A 7 U=""1% on remote sensing images.
(N, and Ny).[2]
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