U-Net Based Architectures for Medical Image

Segmentation

Dillon Laird
2019

Abstract

U-Net has become a popular network for many segmen-
tation tasks, particularly medical segmentation. How-
ever, the overall network has remained relatively un-
changed since its introduction in 2015. Here we examine

the basic U-Net architecture under different loss func-
tions and components on a medical segmentation task,
similar to how the original U-Net was evaluated. We
find that both a modified U-Net with a NAS cell and
Attention U-Net lead to better performance.

Data

The dataset is from the Medical Segmentation De-
cathlon challenge. We use the data provided in the
Task01_ BrainTumour dataset which consists of 750
multi-parametric medical resonance imaging scans (MRI)
scans. The multi-parametric MRI sequences include 4 dif-
ferent modalities, so the input images have a channel dimen-
sion of 4. You can see an example of one of the modali-
ties in Figure 1. There are also 3 classes of segmentation,
edema (swelling), non-enhancing tumour and enhancing tu-
mour. For the purposes of our experiments, we collapse all
classes into a single class. We use 484 volumes for train-
ing and leave 266 for testing. Because each volume contains
many 2D images, we end up with 58 thousand images for
training and 11 thousand images for our validation set.
Example Input Data

odasis o)

Figure 1: An example of the 4 modalities captured in the dataset along
with the segmentation label.

Model

We can parameterize the U-Net architecture with a few key
modules: ConvBlock, SkipConn, UpOp and DownOp.

hY, = DownOp(ConvBlock(h?, F3))
hfi, = UpOp(CoanIock(SkipConn(hf/,hﬁ,‘,u,,),Fg(L,U,,))

i .

1 oo a DownOp) and KY is the ' hidden layer going up (coming

Where hP is the i'" hidden layer going down (comint out of

- etk out of an UpOp). F; is the number of feature maps for the
i'" ConvBlock. You can see these operations and how they
are combined in Figure 77.
Figure 2: Caption
Experiments
Module ‘ ConvBlock ‘ SkipConn | DownOp
U-Net 2 x (Conv k3 x 3, ReLU | Concatenate, Crop |Max Pool k2 x 2
Attn U-Net 2 x (Conv k3 x 3,RelLU AttnCell Max Pool k2 x 2
NAS U-Net NASNet-A Normal Cell |Concatenate, Crop|Max Pool k2 x 2

NAS Red. U-Net|NASNet-A Reduction Cell | Concatenate, Crop| Conv skip2 x 2
Efficient U-Net MBConvBlock Concatenate, Crop |Max Pool k2 x 2

Figure 3: The module implementation details of different architectures. Note UpOp is left out because they are all 2 x 2 transpose convolutions.

For preprocessing we first center crop all the images to 144 x144. We build each model such that it has 8.5 million parameters
to make the comparisons more fair. When training we pick the best model based off of its validation loU score. All models are
trained with the Adam optimizer [?] with a learning rate of 0.0001, a batch size of 40 (the largest batch size that could be fit
into memory) and 20 epochs or until convergence.

We explore several variations of the U-Net architecture.

3 Architecture ‘ loU Each one consists of changing either the ConvBlock,
U-Net 0.9134 SkipConn, UpOp or DownOp module as show in Figure 3.
NAS U-Net 0.9143 We examine two different architectures based off of NASNet
NAS Reduction U-Net | 0.9073 utilizing the normal and reduction cells from the NASNet-A
Attn U-Net 0.9140 block. Additionally we examine Attention U-Net from Oktay
Efficient U-Net 0.6575 et. al. which utilizes an attention SkipConn module and

3 Efficient U-Net from Tan et. al. which uses an

Figure 4: U-Net architectures with their associated loU scores. MBConvBlock as it's ConvBlock module.

Analysis

Nodates (npu)

Prodcion

Figure 5: An example of a false positive example prediction, hence no

label.
@
\ .
@

Figure 6: A saliency map for a particular example.

We present a t U-Net into 4 separate mod-
ules: ConvBlock, SkipConn, UpOp and DownOp. We
then examine several U-Net architectures by testing dif-
ferent modules and find that using attention cells for the
SkipConn and NASNet normal cells for the ConvBlock

both lead to better performance for medical segmenta-
tion. We hope this abstraction can be used to quickly
explore new forms of U-Net with improved performance.

