Josef Malmström iosefmal@stanford.edu

Introduction

- Keystroke dynamics is the time series data describing when and which keys are pressed and released as someone is typing on a keyboard.
- By applying methods from behavioral biometrics, this data has been proven to be an effective unique identifier of a person and can therefore be used for authentication [1].
- Plenty of previous work on this problem (e.g. using neural nets. Gaussian mixtures) but these methods fail to generalize to unseen users.
- Can we find an approach that generalizes by utilizing metric learning?
- Relevant metrics:
 - FAR = False Acceptance Rate = FPR FRR = False Rejection Rate = FNR

Dataset

- Large scale typing dataset from a 2016 study [2].
- Raw typing data from 148 users, both free text and transcribing for 150 minutes each.

key	event	time stamp
R	KeyDown	63578429797235
E	KeyDown	63578429797313
0	KeyUp	63578429797313

Baseline Models

- GMMs:
- FAR = 14.6 %. FRR = 6.7 %
- CNN Classifiers (OVR):

Results for 5 random users

error type					
FAR	17 %	8 %	9 %	23 %	0.1 %
FRR	8 %	9 %	6 %	11 %	23 %

Feature Representation

- **Digraph** = Sequence of two key presses.
- Digraph feature representation:

 $\phi = [KD, H_1, H_2, PP, RP] \in \mathbb{R}^5$ KD = Distance between keys. $H_i = \text{Hold time of } i^{th} \text{ key.}$

PP = Press-to-press time. RP = Release-to-press time

Key distance model				
1 1 1 2 3 4 5 5 6 5 7 8 9 9 13 13 13 13 14 15 15 16 17 18 19 9 13 13 13 13 13 13 13 13 13 13 13 13 13	Back			
23 Q W E R 2 T Y 2 U 1 O O P 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.14			
is A is S is D is F is G is H is J is K is L is 1 3.13 3.13 3.13	l,se			
	4.0			
Space MANAGER W SHI SHI SHI SHI	Ι			

Sample $KD: Y \rightarrow O = (2-2) + (10 - 7) = 3$

- A typing sample is a sequence of digraphs. We use samples of length 100.
- One sample: $x^{(i)} \in \mathbb{R}^{5 \times 100}$

Results

- · Models were trained on data from 30 random users.
- Test data sampled from the same 30 users as well as from 30 random, and previously unseen, users.
- Two prediction methodologies:
- Predict by comparing to the embedding of a single reference sample.
- Compare with the embeddings of five different reference samples and predict based on the majority vote.

0	error type	single	5 majority
Seen Users	FAR	8.69 %	7.63 %
USEIS	FRR	12.29 %	6.61 %

Unseen	error type	single	5 majority
Users	FAR	12.05 %	10.14 %
	FRR	19.75 %	15.26 %

t-SNE of training data

Method

- Kev idea: Learn an embedding of typing samples into a lower dimensional space, where samples from the same user are close and samples from different users are distant.
- Triplet learning: Form triplets (Anchor, Positive Negative), where A,P are samples from the same user, and ${\bf N}$ is a sample from a different user
- Train an embedding network using the triplet loss:

 $\mathcal{L} = \max(\|A_e - P_e\|_2 - \|A_e - N_e\|_2 + \alpha, 0)$

Problem: Most triplets already yield zero loss which results in small gradients. Solution: Online mining for semihard triplets.

Embedding Network Input (1, 5, 100

When the tower model is trained, we train an SVM on the elementwise difference between embeddings:

Discussion and Future Work

- We see that our approach is on par with other methods in terms on FAR and FRR
- This method generalizes reasonably well to users that were not in the training set. Using a single sample from a previously unseen user, we can output decently accurate predictions. The performance is then only further improved as more samples are collected.
- Key aspects of the approach:
 - Online triplet-mining in order to improve convergence.
- Inception-style embedding network in combination with the choice of feature representation results in embeddin that accurately represent the data without overfitting.
- Future work: Extend the system to work well on users that switch between different keyboards.

References

Stanford University