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Motivation

To better understand the neural basis of motion, neuroscience studies record cellular activity in the brain while mice perform an action. In order to link
movement behavior with brain activity, mouse foot placement is manually labeled by experimenters in each image frame. This is incredibly time
consuming and also involves human error (differences in how each individual labels a foot using an X,Y coordinate). A recent Nature Neuroscience paper
used convolutional neural network (CNN) to automate this task. DeepLabCut has a high accuracy rate but takes enormous computational resources and
time. Here, we both explore ways to improve this new field standard (DeepLabCut) and also test two variants of an object detection algorithm, Faster R-
CNN, to see if we can improve performance (maintain high accuracy while improving speed) of labeling mouse feet in this type of image.

Error Analysis continued

A main difference between DeepLabCut and Faster R-CNN is that Faster R-CNN uses bounding boxes as labels, whereas DeepLabCut uses X,Y coordinates.
We initially used a small box to resemble an X,Y point. This resulted in 0% accuracy even on training (high bias). After manually analyzing 100 incorrectly
labeled images, we found that the model was identifying light/dark edges, likely due to the X,Y label being placed at the edge of the foot. To fix this, we
made the input label bounding box larger and centered it around the foot. We tested 5 variants of this before finding the input label with the highest
accuracy on training (RMSE of 80 pixels). This was used in subsequent testing for Faster R-CNN.

Using Faster R-CNN, variance was quite low (minimal difference between training and development error), but bias was higher than when using
DeeplabCut (higher error both in training and development). Therefore, we tried changing the Faster RCNN architecture to mirror DeepLabCut, hoping this
hybrid could improve the bias while still maintaining the speed / low of Faster RCNN.

Data & Preprocessing

Grayscale images were collected using a high resolution (800x600 pixels) camera under infrared light
illumination at 150 frames per second. Each frame constitutes a single image.
Mouse position is fairly constant on the ball (left sagittal view). Example image (left foot marked in pink) seen
on right. Left foot X,Y coordinates were used as the label in each image (hand labeled by experts in Ding Lab at
Stanford University).
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find consistent X,Y coordinates of a feature on the mouse paw to correlate s from the mouse neurons. Further, the gold standard in
the field is using RMSE to benchmark the model[1].
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Error Analysis

DeeplabCut showed both low bias and low variance. Bayes error for this task can be approximated by human ability, which gives a 0% error rate (with
somei iability in X,Y inate label Therefore, even the low error rate seen initially has room for improvement. To improve
bias, we used a deeper CNN (exchanging the ResNet50 component in DeepLabCut with a ResNet101). While DeepLabCut still had the greatest accuracy (lowest RMSE) of all the models tested, we were able to achieve fairly high accuracy using a modified version of
Based on the difference between train and CV RMSE, the larger network (DeepLabCut ResNet101 - especially the version with intermediate Faster R-CNN (using ResNet50 instead of the usual convolutional layers). This new model was significantly faster both at training and testing new data compared
supervision) is overfitting the training data so increasing the amount of training data may help overcome this problem and further decrease the CV to DeepLabCut, even while using a much smaller GPU on workstation computer. We believe further modifying this new algorithm (adding more layers, training

RMSE. data, and training time) could ultimately lead to similar performance as DeepLabCut while requiring far less computational resources. This would be a significant
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Conclusions & Future Directions
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