Speaker Identification in a Noisy Environment

Raw Waveforms vs MFCC

group calls, e.g. family calls to Grandma from
one speaker phone.

o We built a Speaker Identification network. I
Input is a voice sample, output is who's talking.
Our motivation came from Alzheimer’s patients
who forget or can't identify who is speaking in ) = b
sS4

The solution extends to voice conference calls,
as seen on right.

Many existing solutions perform Speaker
Identification only on clean audio. We use noisy
audio to better simulate real-world conditions.

Our network is trained on 20 speakers, as that's
roughly the max size of a family or work team.

20 audiobooks from LibriVox LibriVox and Internet Archive host
royalty-free audiobooks read by

volunteers.

Uncle Tom’s Cabin
MARRIET BEECHER STOWE

Mono-channel, 22050Hz mp3s; one
file per chapter.
CHARLES DARWIN

We split into 0.5 second training
examples.. 0.5 seconds seemed to be
the shortest time a human needs to
identify the speaker.

THE ORIGIN o SPECIES

2

Complication: Some audio books
have multiple speakers. Some
speakers read multiple audio books.

Augmenting with Noise
o Audiobooks are clean recordings. We want background noise.
o 3 Background Noises: 1) Crowd Talking, 2) Laptop Keyboard, 3) Plastic Crumple
e Overlay ENTIRE audiobook with noise in 20-second chunks. Normalize volume to match.
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Experiments
e Model trained on clean data achieves 94% test accuracy on clean data.
o Clean model achieves a paltry 14% accuracy when making predictions on noisy data.
o Significant effort training models with MFCCs, which are generated from the raw
aveform via ial signal Traditionally, most Speech Recognition and
Speaker Identification use MFCCs as input.
o The MFCC models achieved 88% accuracy on clean data, but only 63% on noisy data.
o TA advised that the preprocessing could be discarding valuable signal, so we abandoned

MFCCs and trained a bigger network using raw waveforms as input.
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Final model achieved 86% accuracy on the test set
Accuracy was NOT uniform across speakers
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