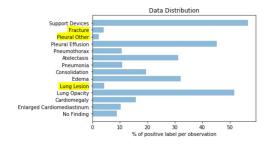


Deep-Learning Based Predictive Models for Chest X-ray Diagnosis

Hoseinali (Ali) Borhan hborhan@stanford.edu Recorded presentation: https://www.youtube.com/watch?v=MS67Bbuo2RA


ABSTRACT AND OBJECTIVES

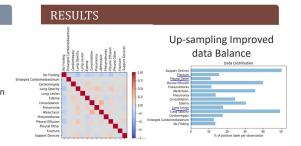
Predictive multi-class models are trained for chest x-ray diagnosis of 14 observations using different deep learning architectures and a large dataset of x-ray images (CheXpert).

- VGG-16, ResNet-50, and DenseNet-121 are trained on an Amazon AWS EC2 GPU instance with Keras.
- For DenseNet-121, both transfer learning and full training are applied.
- · Error analysis of the data indicating unbalance dataset
- Up-sampling data to fix unbalance issue leading to significant improvement of F1 scores over test data
- Gradient weighted Class Activation Map application

DATA AND FEATURES

- CheXpert, a large public dataset for chest radiograph interpretation, consisting of 224,316 chest radiographs of 65,240 patients.
- Features/Model Inputs: Chest X-Ray Data
- Model Outputs: 14 class observations prediction
- Model Category: Computer Vision for Multi Classification
- Data split: train/development (10%)/test(10%)
- · Data distribution:

METHODS


- Deep Learning Models for Multi-Class Prediction
- VGG-16
- ResNet-50
- DenseNet-121
- Weighted Gradient Class Activation Image Localization

No Finding [0]
Enlarged Cardiomediastinum [0]
Cardiomegaly [1]
Lung Opacity [1]
Lung Lesion [1]
Edema [0]
Consolidation [1]
Pneumonia [0]
Atelectasis [0]
Pneumothorax [0]
Pleural Effusion [1]
Pleural Other [0]
Fracture [0]
Support Devices [1]

	f1-score	f1-score
	Baseline DenseNet-121	DenseNet-121 balanced Dat
No Finding	0.27	0.77
Enlarged Cardiomediastinum	0.00	0.42
Cardiomegaly	0.25	0.64
Lung Opacity	0.47	0.73
Lung Lesion	0.00	0.81
Edema	0.22	0.71
Consolidation	0.00	0.55
Pneumonia	0.00	0.52
Atelectasis	0.00	0.66
Pneumothorax	0.00	0.57
Pleural Effusion	0.53	0.77
Pleural Other	0.00	0.73
Fracture	0.00	0.68
Support Devices	0.74	0.84
micro avg	0.42	0.70
macro avg	0.18	0.67
weighted avg	0.34	0.70
samples avg	0.34	0.65

CONCLUSIONS

- · Best model: DenseNet-121 after balancing training data
- The importance of other indexes like f1-score besides accuracy
- The importance of splitting data into train, development and test
- · Localization insights with weighted gradient class activation
- * <u>Future steps</u>: combine CheXpert and MIMIC-CXR to further improve unbalance data, apply image segmentation