cwatkil4@stanford.edu

Deep RNNs for Non-Linear State Estimation
Catherine Watkins

Github repo: https://github.com/cwatkil4/BenchmarkNonLinearEstimation, Presentation: https://youtu.be/X0VFOXUxnac

Predicting

Estimation of hidden system states based on a series of noisy measurement data is a

classical problem in science and engineering addressed in many fields such as
navigation, process control, or time series forecasting. Common model-based
methods in Filtering in Dynamical Systems include the Kalman filter for linear
systems, and the (Iterated) Extended Kalman filter, Unscented Kalman filter, or
Particle filter for non-linear systems.

This project considers a challenging non-linear dynamical system in which traditional
approximate techniques can perform poorly. Current results in literature conclude no
single filtering technique dominates as a sure solution to all non-linear estimation
problems. The solution proposed in this project, a deep recurrent neural network,
aims to be a more widely applicable and consistent solution to challenging non-linear
dynamical systems. The resulting RMSE of the neural network solution is superior

than the current state of the art method, the Particle Filter.

Data & Features

The example considered was a non-linear time series, outlined in equations 1-3
below, which is widely used for bench-marking numerical filtering techniques
(Reference 4.) Model parameters depicted in the equations below are chosen

based on Reference 4 (optimal baseline RMSE = 4.68.) This dynamical system is a

one-state example with a bimodal prior.

)

@

Y= —+1v; ?2)

20

2o~N(0,25), w,~N (0,10),v,~N(0,1) 3)

+ 0.8cos(1.2t) + wy (nH

Models

This project explores applying a deep RNN consisting of stacked LSTM cells to
solve the non-linear state estimation problem outlined in equations 1 and 2.
The mathematical formulation of a single LSTM cell is outline in equations 4-9

below. LSTMs, like Kalman Filters, allow

@ information from prior states to
information the prediction at a
current time step.

E = tanh(W
T, = o(W,[a
Ty = o(Wyla

(Wofa

+ho) m
<t>) ©

The graphics below depict how multiple RNN cells, in this case, LSTMs can be
stacked to create a deep 3-layer RNN architecture. This stacked cell unit is
repeated for the length of the entire time series estimation problem, in this
case T = 100 time steps. The loss function used was RMSE, and Adam was the
selected optimizer.

o S bl bl Sm
4 fortengthotseres. | a8 > I

The data required to train and validate a neural filter solution can be simulated

using the dynamical system above. For a single time step t, the measured outputs

(y,) represent our feature vector and the desired outputs (x,) represent the label or

ground truth at time t. This process of constructing measured outputs (y,) and

desired outputs (x,) from sampling of the normal distribution is repeated for the

series length (T), which represents the length of the time series which will be

estimated by the sequence model. In this project we considered a series length of

100 time steps. The graph below represents the features and labels for a given
observation of length T of the system.

Desired Output

The process of constructing data
for training simply requires
generating data by sampling from
the normal distribution and of

propagating through time for 20

each epoch. Between 5,000 and MW m % 6w R)
25,000 epochs of data were Measured Output

required to train the network
depending on the |
hyperparameters. The resulting . .
models were validated on 10 "
epochs of validation data. %

Results
Training Validation
i :5[,,,*,"7,,,,,:7;7;,;' J]
» o fd\a/\/ﬁ/\/.__/*\/\(
g : ‘ & \/O/\./\,\J\/Q/\r-\/\/ ‘
i K SNNALNNANA %
S | | o] AN e
» S NS o NN~ |
i “ |
‘::[IO AT
TS T

Aversge st =4 54

The graphs above summarize the training and validation of the tuned model.
The RNN outputs (shown in blue) track closely with the Desired Outputs
(shown in red.) The inputs to the model are shown in pink. This model
produced an average RMSE of 4.67 in training average over the last 100
epoch, and an RMSE of 4.64 in 10 epochs of validation. This model was
trained for a total of 10,000 epochs and validated on 10 epochs, which each
consist of 10 batches of the time series of length 100.

Tearning Rate 2 Layers,
Te-2 12.89/12.97
le-d 5.15/5. 74
Te-6 T044710.60 T0.50710.46 10.4:

Tlayers
172

The table above summarizes some preliminary hyper parameter tuning of
the learning rate and number of stacked recurrent layers. The final model
implemented a exponential learning rate decay schedule (3-layer RNN, batch
size =10, with an exponential learning rate schedule with staircase step
every 1000 epochs initialized at 1e3 with a base of 0.96.)

Discussion

The performance of the tuned RNN filter model is compared to
other non-linear filtering techniques in the table below. The
baseline optimal RMSE on this benchmark problem was produced
by a tuned Particle Filter (RMSE 4.68.) The Neural Filter surpassed
this error rate with a RMSE of 4.64. Further hyper parameter tuning
would likely improve performance further.

Performance metrics for filters
Filter RSME
Extended Kalman Filter 21.53
Unscented Kalman Filter A | 26.97
Particle Filter B 4.68
Neural Filter 4.64

These results are very interesting. Non-linear filtering problems are
challenging because no single technique prevails over the others. A
neural filter model can be seen as a possible “universal” estimator
even for challenging non-linear systems. As long as accurate desired
outputs can be generated by sufficient instrumentation, etc., a
neural filter can be a robust alternative to other filtering
approaches.

Future

Future work should consider a few things avenues to improve
model performance. First a deeper exploration in tuning the
learning rate schedule, such as various stepped decreases or a
cosine annealing of the learning rate over the training process may
be beneficial to model performance. Second, optimizing batch size
would be a useful next step. Lastly, considering the use of Gradient
Recurrent Units (GRUs) as an alternative to LSTMs. GRUs are less
complex; they only contain a single gate, while the LSTM consists of
three gates. Hence, a model consisting of GRUs will have fewer
learn-able parameters and may be less intensive to train than one
consisting of LSTMs.

References

1. James T. Lo (1994), “Synthetic Approach to Optimal Filtering”, IEEE
Transactions on Neural Networks, Vol. 5, No. 5.

2. Zachary C. Lipton, John Berkowitz, Charles Elkan (2015), “A Critical Review of
Recurrent Neural Networks for Sequence Learning”, arXiv.org

3. Cappe et. al. (2007), “An Overview of Existing Methods and Recent Advances
in Sequential Monte Carlo”, Proceedings of the IEEE, Vol. 95, No. 5.

4. M. L. Psiaki (2013), "The blind tricyclist problem and a comparative study of
nonlinear filters: A challenging benchmark for evaluating nonlinear estimation
methods," IEEE Control Systems Magazine, Vol. 33, No. 3.

5. Ristic et. al. (2004), “Beyond the Kalman Filter. Particle Filters for Tracking
Applications”, Artech House.

