INTRODUCTION

Lane detection is to detect lanes on the road and provide the accurate location and shape of each lane. A robust and consistent lane detection engine helps to guide vehicles and could be used in autonomous vehicles and driving assistance systems[3]. Here we present a Semantic Segmentation approach with encoder-decoder CNN architecture for lane detection.

DATASET

TuSimple Dataset
- 1 second clip of 20 frames, only last frame labeled.
- At most 4 lane markings (current and left/right lanes)
- Images with corresponding JSON labels in txt file.
- Each lane's label is represented as a list of points.
- 2.8K 1280x720 images.
- Freeway images only, no local road.

Preprocessing
- Pair each image with a binary label image generated by corresponding labels and resize image to 320x192.
- Randomly shuffle 2.8K images to train(80%), dev(10%), and test(10%) sets.

METHOD

Loss function design
There are way more non-lane pixels than lane pixels (200:1). Hence, weighted cross entropy is used to compute the loss of pixel classification. β is the weight, as well as a hyperparameter for tuning.

$WCE(p, \hat{p}) = -(\beta p \log(\hat{p}) + (1 - p) \log(1 - \hat{p}))$

Evaluation
We convert the binary prediction image back to the JSON labels. The prediction accuracy is computed as:

Accuracy = \frac{\text{correct clip}}{\text{total clip}},\quad \text{where} \quad \text{correct clip} = \sum_{i=1}^{\text{Nclip}}\text{correct point}, \quad Nclip \text{ is the number of requested points in the last frame of the clip. A point is considered correct if the predicted point and label point is within a certain threshold.}$

MODEL ARCHITECTURE

- The model is based on SegNet[1].
- Consists of 11,548,802 parameters in total.
- Consists of an encoder network and a corresponding decoder network.
- The encoder network is identical to the VGG-16.
- The decoder is followed by a pixel-wise binary classifier.

EXPERIMENTS

- We focused on tuning class weights β of values 50/200/500/2000 and plotted their loss graph.
- We chose weights of model using early stopping for each class weight and evaluate the performance on the testing set as shown below.
- We selected the model of class weight 200 to do the error analysis and visualization.

RESULT

We treated lane detection as a semantic segmentation problem and applied an encoder-decoder CNN architecture to tackle the problem. We achieved an 84.8% accuracy using TuSimple metrics, which is comparable to some state-of-art models like LaneNet (3rd prize in TuSimple challenge).

CONCLUSION

FUTURE WORK

- Use loss function with dynamic class weights.
- Collect more data with different scene types.
- Leverage more advanced regularization techniques like Dropout.
- Use more proper interpolation technique when resizing the images.
- Freeze the VGG layers to speed up training.

REFERENCE